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Deformable Model Fitting by Regularized Landmark Mean-Shift 
Jason M. Saragih · Simon Lucey · Jeffrey F. Cohn
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What can you do with sparse face landmarks?

Bootstrap a better model
dense

3D
richer (albedo, lighting, …)

Sounds familiar?
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Sparse points that we 
“trust”

Dense reconstruction 
using information from 

previous step

Structure from motion Multi-view stereo

Face landmarks Rich parameterized  
model



[Garrido et al. 2015]



You can also use deep learning…
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Perspective-aware Manipulation of Portrait Photos 
Ohad Fried · Eli Shechtman · Dan B Goldman · Adam Finkelstein



Distance Matters

photos from http://stepheneastwood.com/



Distance Matters

SelfiePro Photographer
Limited by arm lengthUses telephoto lens



Distance Matters

SelfiePro Photographer
Limited by arm lengthUses telephoto lens

Close → “approachable”

Far → “impressive”
[Perona 2007]
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Camera placement is hard

• Lack of equipment

• Lack of expertise

• Ephemeral moment

• Physical constraints



It is hard to capture the perfect photo…

• Lack of equipment 

• Momentary event 

• Passersby 

• Lack of knowledge

We would like to move the camera in 
post processing



Demo
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Goals

Virtually move perspective camera 

• From single image 

• Results similar to ground truth 

• No background artifacts 

• No seams
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480cm

Dataset:  
[Burgos-Artizzu et al. 2014]
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Input 60cm Simulated 480cm Ground Truth 480cm
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Key Contributions
• New application 

- Timely: “year of the selfie”

• New optimization framework 

- Full perspective model 

- Robust for single input photo

• Fit in 3D, warp in 2D (following, e.g. [Yang ’11]) 

- Warp field works for perspective model
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Head Model

We want to support diverse input photos 

We need an expressive model

What should it include?
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Head Model

• Head shape (“identity”)

• Bone/muscle layout (“expression”)

• Location and pose, relative to camera

• Internal camera parameters



[Cao et al. 2014]

FaceWarehouse
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Aligned models

[Cao et al. 2014]



identities

expressions
[Cao et al. 2014]
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We can combine these 
to create new heads!

HOSVD
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11K vertices 
150 identities 

47 expressions 

34530x150x47

Core 
Tensor

40 x 50 x 25

⊗1 Α34530x40 Β150x50 Γ47x25⊗2 ⊗3

HOSVD

And for a single head:

Core 
Tensor

40 x 50 x 25

⊗1 Α34530x40 β1x50 γ1x25⊗2 ⊗3

Low rank approximation: 
✓ less space 
✓ less noise
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Core 
Tensor ⊗1 Α ⊗2 β ⊗3 γ

Specific Head

Rotation Translation **
Camera 

Calibration 
Matrix

*

(3 of 5) (3) (3)
(50) (25)

3 + 3 + 3 + 50 + 25 = 84 parameters

HOSVD
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Fiducial points

[Saragih et al. 2009]

66 points 3 points
(manually marked)
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Fitting

Plug in 
parameters

good bad



Optimization

Solve 
rotation &  
translation

Solve 
identity

Solve 
expression

Solve 
camera

Update 
3D 

landmarks

Coordinate descent
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Warp field

Triangulation 
based 

interpolation



Warp field

Discrete Laplace operator Averaging filter
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Radial Face only Mean head Ours

vs.

no expression 
or identity[Vlasic et al. 2005] 

[Yang et al. 2011] 

…
[Hassner et al. 2015]

Full model



Input Ground truth Radial Face only Mean head Ours

no error high error



Input Mean head Ours



0 0.5 1 1.5 2 2.5 3 3.5

ours

mean-head

face-verts

radial

input

Error (median optical flow)

median error

Input

Radial

Face only

Mean head

Ours
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Rotation



Right 7°

Useful for  
Face  

Identification!
(e.g. DeepFace ’14)

Rotation



Right 7°

Not Perfect

Useful for  
Face  

Identification!
(e.g. DeepFace ’14)

Rotation
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Limitations & Future Work

• Fitting may fail

- Use more data — RGB values 

• Does not support extreme rotations

- Hallucinate missing features



http://faces.cs.princeton.edu
More results and demo:

http://faces.cs.princeton.edu
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Text-based Editing of Talking-head Video 
Ohad Fried · Ayush Tewari · Michael Zollhöfer · Adam Finkelstein · Eli Shechtman ·  
Dan Goldman · Kyle Genova · Zeyu Jin · Christian Theobalt · Maneesh Agrawala











Video Blogs Interviews Online Courses

Speeches Commercials …
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about the spoken transcript



In these videos we care mostly 
about the spoken transcript

But we edit them just like any other video…
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Task Current Proposed

Compose a sentence 
from multiple takes Jump cuts Seamless transitions

Delete words Jump cuts Seamless transitions

Change or add words New recording session Synthesize new video







“The market closed today with apple stock price at 
one hundred and ninety one point four five dollars per share”



“The market closed today with apple stock price at 
one hundred and ninety one point four five dollars per share”

eighty two point two







Idea: use existing snippets to 
construct new words
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Reframed as a selective 
interpolation problem

Only use 
expressions

Seamless 
transitions



Method overview
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Viseme search

• Identical phonemes are likely to be visually similar

• Same for visemes (but less so)

• Cannot expect to find a good coherent viseme sequence for long edits

• Instead, find several matching subsequences and combine
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Viseme search

F (0.1 sec) AH (0.2 sec)
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Viseme search
Modified Levenshtein edit distance 

Cinsert = 1

Cdelete = 1

Cswap = Cvis(vi, wj)( |vi | + |wj | ) + χ |vi | − |wj |



Viseme search



Viseme search

Match cost +  
short length penalty



Viseme search
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Parameter blending

• Geometry

• Albedo

• Illumination 

• Pose

• Expression

Constant

Linear interpolation in new region

Later…

Linear interpolation between snippets





Background retiming



Background retiming

… The quick brown spider jumped …

… The quick brown fox jumped …



Background retiming

… The quick brown spider jumped …

… The quick brown fox jumped …

Longer


Shorter



Background retiming

… The quick brown spider jumped …

… The quick brown fox jumped …

Longer


Shorter

We want localized edits. Everything else should stay the same
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Background retiming

• Use longer sequence (even if edit is short)

• Calculate number of frames to add / remove

• Spread equally

• Long enough —> no retiming artifacts

• Pose parameters taken from retimed background
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Neural Face Rendering 



Neural Face Rendering 

Loss   = Photometric Spatial 
adversarial

Temporal 
adversarial+ +
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[Jin et al. ’17]
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Deep Video Portraits 
[Kim et al. ’18]

Ground truth Ours
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OursFace2Face 
[Thies et al. 18]
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Morph Cut 
[Berthouzoz et al. 12]

Ours

“… learning from examples and and scientists …”
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“This video clip looks real to me”

0

12.5

25

37.5

50

5 (strongly agree) 4 3 2 1 (strongly disagree)

GT Base Videos GT Target Videos Our Modified Videos

Our results rated ‘real’ in 
59.6% of cases

% of scores
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Limitations & future work
• Moods and facial expressions


• We might blend incompatible sequences


• Can we control these when synthesizing?

• Viseme search is slow


• Can speed up with some relaxations

• Interactivity


• Algorithm speedups


• Editing UI
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