

AudeoSynth: Music-Driven Video Montage

Liao et al. SIGGRAPH 2015

Get a taste of it!

Presentation outline 🕥

- Motivation
- Previous work
- Problem formulation
- Definition of video and music segment
- Challenges
- Analysis (video + music)
- Synthesis (Energy Terms)
- Results

Motivation

Why do it at all?

- Aesthetically compelling to match video content with the beats of music

Why do it automatically?

- Manually editing video to match a piece of music is very time consuming
- The composition has a large degree of freedom

Manuall mess

"so this is done by hand, it's just your hand touch - listening to the specific piece of music you have **over and over** and **kind of visualizing in your head the pacing of it and the beats per minute**. Whether it sounds slow or fast to you, but you could use these basic waveforms and cut and arrange things and place them on the beat to create a nice syncopated cut or cinematic sequence.."

Applications

Event aftermovies, adventure, sport and travel videos etc ..

(lets watch later)

Related work

Music-driven imagery ..

Adapted solutions from:

- Optical flow [Liu et al. 2005]. (Motion magnification)
- Saliency estimation [Cheng et al. 2014] (Global contrast based salient region detection)

Recall Visual Rhythm and Beat (Davis et al.)

Rhythm..

Visual beats..

Saliency..

Will be revisited - keep in mind

Problem formulation

Match a video subsequence to each music segment

Match a video subsequence to each music segment

Match a video subsequence to each music segment

Essentials:

- Audio stays the same
- Play speed of video clips can be changed

Challenges

Remember the 3 challenges mentioned in the paper?

- Large degree of freedom
- Different types of media
- Large search space

Challenge #1

Large degree of freedom

- which video clips do we want to use?
- when to cut?
- playback speed?

Challenge #2

Different types of media

- Sound: one-dimensional in waveform
- Video: two spatial dimensions + one temporal

Challenge #3

Large search space

- Choosing a subset of video clips
- Deciding their order

Tackle the challenges

Narrowing down to two thumb-of-rules

- Cut-to-the-beat
- Synchronization
 - Extract features

System overview

Problem formulation - A closer look

Match a video subsequence to each music segment

Before we even start thinking about the matching..

- How to define a video subsequence?
- And how to define a music segment?

Definition of a music segment

According to "cut to the beat" - Every music segment must start with a bar

Where bar is "the most basic unit of a music piece" in the MIDI format

MIDI format

An encoding of musical signals MIDI data: Sequences of musical note events

- Specifying note onset parameters:

time
pitch
volume
duration

Why not waveform or mp3?

Piano		Chromatic Percussion		Organ		Guitar	
0	Acoustic Grand Piano	8	Celesta	16	Hammond Organ	24	Acoustic Guitar (nylor
1	Bright Acoustic Piano	9	Glockenspiel	17	Percussive Organ	25	Acoustic Guitar (steel)
2	Electric Grand Piano	10	Music box	18	Rock Organ	26	Electric Guitar (jazz)
3	Honky-tonk Piano	11	Vibraphone	19	Church Organ	27	Electric Guitar (clean)
4	Rhodes Piano	12	Marimba	20	Reed Organ	28	Electric Guitar (muted
5	Chorused Piano	13	Xylophone	21	Accordion	29	Overdriven Guitar
6	Harpsichord	14	Tubular Bells	22	Harmonica	30	Distortion Guitar
7	Clavinet	15	Dulcimer	23	Tango Accordion	31	Guitar Harmonics
Bass		Strings Ensemble		Brass			
32	Acoustic Bass	-		-	String Ensemble 1	56	Trumpet
33	Electric Bass (fip				Ensemble 2	57	Trombone
34	Electric Bas				gs 1	58	Tuba
35	Fretless P	A			2	59	Muted Trumpet
36	Slap	-				60	French Horn
37	Sla	-		-		61	Brass Section
38	\$ 77	,	Piccolo			62	Synth Brass 1
39	14		riccolo			63	Synth Brass 2
Ree						Synt	th Pad
64	73)	Flute			88	Pad 1 (new age)
65					1000	89	Pad 2 (warm)
66	74	1	Recorder			90	Pad 3 (polysynth)
67	/-		Recorder			91	Pad 4 (choir)
68						92	Pad 5 (bowed)
69	- 75)	Pan Flute			93	Pad 6 (metallic)
70	Ba					94	Pad 7 (halo)
71	Clam.	6	Dottle DL		ead)	95	Pad 8 (sweep)
Synth Effects)	Bottle Blow		Sound Effects		
96	FX (rain)					120	Guitar Fret Noise
97	FX 2 (soundtrack)				oogo	124	Breath Noise
98	FX 3 (crystal)	100		114	Steel Drums		hore
99	FX 4 (atmosphere)	107	Koto	115	Woodblock		eet
100	FX 5 (brightness)	108	Kalimba	116	Taiko Drum		Ring
101	FX 6 (goblins)	109	Bagpipe	117	Melodic Tom		
102	FX 7 (echoes)	110	Fiddle	118	Synth Drum		
103	FX 8 (sci-fi)	111	Shanai	119	Reverse Cymbal	12.	

MIDI format

track 0 Time: 2.5 seconds Instrument: Piano Volume: 80 Pitch: 50

Bar

<u>track 2</u>

Segment

Bar

Time: 1.3 seconds Instrument: Violin Volume: 50 Pitch: 70

Bar

Bar

Definition of a video subsequence

Giving a video clip, the video subsequence is determined by:

- the start frame **Sf**
- end frame **ef**
- scaling factor **scale**

Now we're ready for the Energy function!

Initial video clips: $\mathbf{V} = \{v_1, v_2, ..., v_p\}$ Sequential segments of input music: $\mathbf{M} = \{m_1, m_2, ..., m_q\}$

$$E(\boldsymbol{\theta}, \mathbf{M}) = E_{match}(\boldsymbol{\theta}, \mathbf{M}) + E_{transit}(\boldsymbol{\theta}, \mathbf{M}) + E_{global}(\boldsymbol{\theta}, \mathbf{M}),$$
(1)

Unknown parameters:
$$oldsymbol{ heta}=\{ heta_1,\ldots, heta_q\},$$
 $heta_i\ =\ ig(v_{a_i};sf_i\ ,ef_i\ ,\ scale_i\ ig)$

What is
$$\, heta_i$$
 ?

Solution to the energy minimization:

$$\mathbf{V} = \{v_1, v_2, ..., v_p\} \quad \mathbf{M} = \{m_1, m_2, ..., m_q\} \quad \boldsymbol{\theta} = \{\theta_1, \dots, \theta_q\}$$
$$E(\boldsymbol{\theta}, \mathbf{M}) = E_{match}(\boldsymbol{\theta}, \mathbf{M}) + E_{transit}(\boldsymbol{\theta}, \mathbf{M}) + E_{global}(\boldsymbol{\theta}, \mathbf{M}),$$
(1)

a mapping function,
$$a\,:\,i
ightarrow\,j$$

... that maps each music segment
$$i~(=1,\ldots,q)$$

.. to a subsequence of a video clip
$$j \ (\in \ \{1,\ldots,p\})$$

Analysis

Video Analysis

What to we need to know to make a good match with a music segment?

- Motion
- Frequency
- Frame saliency

Motion

$$\phi(v_j, f) = OpticalFlow(v_j(f-1), v_j(f))$$

Can we tell from a single frame if it has salient motion?

Motion

What is actually the most interesting motion?

Motion

- What is the difference between the Optical Flow and Motion Change Rate (MCR)?

$$\nabla \phi(v_j, f; x) = \phi(v_j, f; x) - \phi(v_j, f - 1; x'), \quad (2)$$

where $x = x' + \phi(v_j, f - 1; x').$

W W

(weighted mean)

Motion - MCR

 $\nabla \phi(v_j, f; x) = \phi(v_j, f; x) - \phi(v_j, f - 1; x'), \quad (2)$ where $x = x' + \phi(v_i, f - 1; x').$

pixelwise temporal difference of the optical flow = _____ =

frame f-1

Optical flow

[Real time optical flow with Video++@200 fps]

Mean saliency weighted motion change

a scalar value for the MCR

$$\Phi(v_j, f) = \frac{1}{N} \sum_{x,y} \alpha(v_j, f; x, y) \|\nabla \phi(i, f; x, y)\| / \max_f \Phi(v_j, f)$$
saliency map as a weight

what is happening here?

Saliency map

What is a saliency map?

 Represents what is meaningful in the frames

- Using the method in [Cheng et al. 2014)

[Saliency Mapping of Taylor Swift's 'Shake It Off']

Usage of Optical Flow

What else can we calculate once we have the optical flow?

From the optical flow:

- calculate Motion Change Rate (MCR)
 peak frequency
- determine **flow peak**
- calculate **dynamism**

Flow Peak & Dynamism

Flow Peak:

$$\Phi(v_j, f) = \frac{1}{N} \sum_{x,y} \alpha(v_j, f; x, y) \|\nabla \phi(i, f; x, y)\| / \max_f \Phi(v_j, f)$$

Dynamism:

$$\varphi(v_j, f) = prctile(\alpha(v_j, f) \| \phi(v_j, f) \|, 99.9) / max_f \varphi(v_j, f)$$

Music Analysis ^{3 steps}

(1) divide the music piece into several segments

For each segment:

- (2) Determine saliency score
- (3) Compute features (for defining the transition cost)

Hierarchical clustering tree:

Hierarchical clustering tree:

- Merge the pair of consecutive segments with the minimum segment distance

(let's say we are happy with 3 segments)

Segment distance definition:

$$\chi(m_{i}, m_{i+1}) = w_{0} \frac{|\text{pace}(m_{i}) - \text{pace}(m_{i+1})|}{\text{mode}(pace)} + w_{1} \frac{|\text{median}(\text{pitch}(m_{i})) - \text{median}(\text{pitch}(m_{i+1}))|}{\sigma_{pitch}} + w_{2} \frac{|\sigma(\text{pitch}(m_{i})) - \sigma(\text{pitch}(m_{i+1}))|}{\sigma_{pitch}}, \quad (5)$$

Music Analysis - Saliency scores

Eight types of binary saliency scores for **note onsets**.

Initially set to zero

Saliency scores

if

Music Analysis - Final saliency score

Final saliency score for note onset ti

$$\omega(t_i) = (1 + \operatorname{vol}(t_i) \sum_{i=1}^{8} \operatorname{score}_i) / \max(\omega(t_i)), \qquad (6)$$

 $vol(\cdot) = volume of note = mean squared magnitude in the first 20% of the note duration$

Music Analysis - Final saliency score 2.0

We already have the "final saliency score" - so what is happening here?

$$\Omega(m_i; t) = \sum_{t_i=1}^{K} \omega(t_i) G(t - t_i; \sigma_{t_i}), \tag{7}$$

G = Gaussian kernel with σ ti as the standard deviation, centered at time ti

Music Analysis - Final saliency score 2.0

Saliency scores are calculated here..

.. But what if we want to know the saliency score there?

Computed saliency with its associated waveform data

- Could you interpret the saliency by just looking at the waveform, as the manually cut-to-the-beat approach?

Synthesis

Recall - energy function to minimize:

Matching cost

What is the purpose of the matching cost?

- peak frequency (video)
- motion change rate (video)

- pace (music)
- saliency score (music)

US

Energy terms - Matching cost

$$E_{match}(\boldsymbol{\theta}, \mathbf{M}) = \sum_{i=1}^{q} \operatorname{Match}(m_{i}, \theta_{i}), \qquad \Gamma(m_{i}, \theta_{i}) = \begin{cases} 1, & pace(m_{i}) > 1, \psi(\theta_{i}) < 0.5; \\ 1, & pace(m_{i}) < -1, \psi(\theta_{i}) > 2; \\ 0, & \text{otherwise}, \end{cases}$$

$$\operatorname{Match}(m_{i}, \theta_{i}) = \Psi(m_{i}, \theta_{i}) + \Gamma(m_{i}, \theta_{i}).$$

$$\Psi(m_{i}, \theta_{i}) = \begin{cases} G(x; \sigma_{co}), & x \ge 0; \\ 2 - G(x; \sigma_{co}), & x < 0; \end{cases}$$

$$x = \Omega(m_{i}, t)^{T} \Phi(a_{i}, t) / N$$

Saliency/MCR mismatch

$$x = \Omega(m_i, t)^T \Phi(a_i, t) / N$$

Saliency/MCR mismatch

.. and if x = 0 we will get maximum penalty cost from the Gaussian kernel

Transition cost

What is the purpose of the transition cost?

- We want to encourage video transitions across cuts to match characteristics of musical transitions across segments

- "velocity" = mean flow magnitude (video) pace (music)
- dynamism (video)

- number of tracks (music)

Energy terms - Transition Cost

$$\begin{aligned} \operatorname{Transit}(i, i+1) &= \Delta(m_i, m_{i+1}, \theta_i, \theta_{i+1}) + \\ \Lambda(m_i, m_{i+1}, \theta_i, \theta_{i+1}). \end{aligned}$$

$$\Delta(m_i, m_{i+1}, \theta_i, \theta_{i+1}) = \begin{cases} 1, & \kappa_p < 0.5, \kappa_v > 0.75; \\ 1, & \kappa_p > 2, \kappa_v < 1.5; \\ 0, & \text{otherwise}, \end{cases}$$

$$\Lambda(m_i, m_{i+1}, \theta_i, \theta_{i+1}) = \begin{cases} 1, & \nabla t < 0, \nabla d > -0.3; \\ 1, & \nabla t > 0, \nabla d < 0.3; \\ 0, & \text{otherwise}, \end{cases}$$

$$\kappa_p = \operatorname{pace}(m_{i+1})/\operatorname{pace}(m_i) \qquad \qquad \nabla t = \operatorname{numtrack}(m_{i+1}) - \operatorname{numtrack}(m_i) \\ \kappa_v = \operatorname{vel}(p_{i+1})/\operatorname{vel}(p_i) \qquad \qquad \nabla d = \delta(v_{a_{i+1}}, sf_{i+1}) - \delta(v_{a_i}, ef_i) \end{aligned}$$

Global constraints

What is important to achieve an interesting composition?

- using the same video clips over and over again while ignoring others is probably not desirable ..

Introducing a penalty cost to prevent duplicates:

$$\sum_{i=1,\dots,p} \left(2^{\operatorname{count}(v_i)-1} - 1 \right)$$

Optimization

Recall - what to optimize

Once again, what has to be optimized?

These parameters!
$$\theta_i = (v_{a_i}; sf_i, ef_i, scale_i)$$

Too large parameter space for the Metropolis-Hasting algorithm to traverse -> Introduce a precomputation step:

For each possible music-video pair, the optimal 4-tuple of these parameters is computed

Optimization - precomputation step

For each music-video candidate pair:

Global alignment

- Optimizes the position of the first frame and its associated temporal scaling factor

Temporal snapping

- With the global alignment result, now allow a temporally varying scaling factor for better synchronization

Global alignment & Snapping

Temporal Snapping

Identifies a set of keyframes in the video and optimizes a temporal scaling between them to match note onsets.

The following video frames are chosen as keyframes, (a1) the starting frame, (a2) the last frame, and (a3) any intermediate frame whose motion change rate is a local peak, i.e. large than that of the preceding and following frames and above the 90 percentile. Likewise, the following note onsets are labeled as salient, (b1) the first one of a music segment, (b2) the last one of a music segment, and (b3) any note onset with a saliency score 0.5 or above.

MCMC sampling

Final step is to sample the label space for an optimal solution

Two types of mutations are design:

- with probability 0.7, the video index for a music segment is updated to a random index between 1 and n, where n is the total number of video clips
- and with probability 0.3, two music segments' corresponding video indices are swapped.

Rendering

Rendering

The final video montage is formed by concatenating the scaled subsequences

- Given θ and the temporal snapping parameters, upsampling and downsampling are applied

Results

Results

Recall Visual Rhythm and Beat (Davis et al.)

Commonalities?

Differences?

How important is video rhythmic in the two implementations?

- what kind of inputs are expected for the two applications?

