Structure from Motion

(or 3D from 2D)

CS448V — Computational Video Manipulation

April 24th, 2019

Overview

Structure from Motion

Photo Tourism

3D from 2D

- 3D? Really? Why 3D?
- Didn't I sign up for video manipulation?

- Images are 'just' a 2D projection of our real world
- Many edits are easier to perform directly in 3D

Video Stabilization in 3D

First-person Hyper-lapse Videos

Johannes Kopf Microsoft Research Michael F. Cohen Microsoft Research Richard Szeliski Microsoft Research

(a) Scene reconstruction

(b) Proxy geometry

(c) Stitched & blended

Structure from Motion (SfM)

What does SfM recover?

- 1) Sparse 3D point cloud $\mathbf{v}_i \in \mathbb{R}^3$
- 2) Camera Extrinsic Parameters
 - $\mathbf{t}_i \in \mathbb{R}^3$, position
 - $\mathbf{R}_i \in \mathbf{SO}(3)$, orientation
- 3) Camera Intrinsic Parameters

• focal length f, skew s, optical center c, lens distortion parameters, ...

Quiz: What is?

- Structure from Motion
 - > "3D pointcloud + cameras"
- Bundle Adjustment
- "a way to perform SfM"
- Multi-view Stereo
- "dense reconstruction step after SfM"
- Photogrammetry
- "dense reconstruction step after SfM"

Intrinsics of a Perspective Camera

 $\mathbf{p}_{x} = \frac{\mathbf{f} \cdot \mathbf{v}_{x}}{\mathbf{v}_{z}}$ $\mathbf{p}_{y} = \frac{\mathbf{f} \cdot \mathbf{v}_{y}}{\mathbf{v}_{z}}$

"rule of equal triangles"

$$\frac{\mathbf{p}_{\mathbf{x}}}{\mathbf{f}} = \frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{v}_{\mathbf{z}}}$$

"vectorize/homogeneous coordinates"

3)
$$\mathbf{p} = \mathbf{dehom}(\widehat{\mathbf{p}})$$
$$\begin{bmatrix} \widehat{\mathbf{p}}_{x} \\ \widehat{\mathbf{p}}_{y} \\ \widehat{\mathbf{p}}_{z} \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{x} \\ \mathbf{v}_{y} \\ \mathbf{v}_{z} \\ \mathbf{\widehat{p}} = \mathbf{K}\mathbf{v} \end{bmatrix}$$

"more general"

$$\mathbf{K} = \begin{bmatrix} \mathbf{f} & \mathbf{s} & \mathbf{c}_{\mathbf{x}} \\ \mathbf{0} & \mathbf{f} & \mathbf{c}_{\mathbf{y}} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Epipolar Geometry & Triangulation

Essential/Fundamental Matrix

 $\mathbf{f_l}^T \mathbf{Ff_r} = \mathbf{0}$ Fundamental Matrix

"2D to 2D"

"homogeneous"

Pipeline: Structure from Motion

Images

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Pipeline: Structure from Motion

Images

Detect features using SIFT [Lowe, IJCV 2004]

Refine matches using RANSAC

Match Features between Images

Refine matches using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs

Correspondence estimation

Image 1

Image 2

Image 3

Image 4

Link up pairwise matches to form connected components

➤ Single 3D Point

Pipeline: Structure from Motion

Images

Detect features using SIFT [Lowe, IJCV 2004]

Refine matches using RANSAC

Energy Minimization

Multi-view Geometry

Bundle Adjustment

Energy Minimization based Approach for SfM

$$\Theta^*, V^* = \underset{\Theta,V}{\operatorname{argmin}} E(\Theta, V)$$

$$\mathbf{V} = \{\mathbf{v}_1, ..., \mathbf{v}_M\}$$

$$M \text{ points}$$

$$\mathbf{\Theta} = \{\Theta_1, ..., \Theta_N\}$$
 $N \text{ cameras}$

Re-projection Error

$$E\left(\Theta,V\right) = \sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{w}_{i,j} \left\| \mathbf{p}_{i,j} - \Pi_i(\mathbf{v}_j) \right\|_2^2$$

 $\Pi_{i}(\mathbf{v}_{j})$ projection of point j in camera i

$$\mathbf{w}_{i,j} = \begin{cases} 1, & \text{camera } i \text{ observes point } j \\ 0, & \text{otherwise} \end{cases}$$

Photo Tourism: Exploring Photo Collections in 3D

Noah Snavely
University of Washington

Steven M. Seitz University of Washington Richard Szeliski Microsoft Research

Photo Tourism

1) Images from the Web

2) Structure from Motion

3) Photo Explorer

Photo Tourism

1) Images from the Web

2) Structure from Motion

3) Photo Explorer

SfM / Non-Convex Optimization

We need a good initialization!

Incremental SfM

- Select two "suitable" images/cameras
- Find camera parameters using the 8-Point algorithm / RANSAC

• Iterate:

- Add one camera using the Direct Linear Transform (DLT)
- Bundle Adjustment (Levenberg Marquardt)
- Prune "bad tracks" after each iteration

Incremental Structure from Motion

Scale, Rotation, Position Ambiguity

Geo-Registration

Photo Tourism

1) Images from the Web

2) Structure from Motion

3) Photo Explorer

- Browsing
- Rendering
- Annotation

3D Browsing

Object-based browsing

Object-based browsing

Relation-based browsing

Relation-based browsing

Relation-based browsing

Photo Tourism

1) Images from the Web

2) Structure from Motion

3) Photo Explorer

- Browsing
- Rendering
- Annotation

Rendering Transitions

Rendering Transitions

Photo Tourism

1) Images from the Web

2) Structure from Motion

3) Photo Explorer

- Browsing
- Rendering
- Annotation

Annotations

Annotations

Reproduced with permission of Yahoo! Inc. © 2005 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Limitations

- 1. Some photos can not be registered
 - Reason: blur, noise, no overlap, dynamic objects, ...
- 2. Runtime Speed (up to several weeks)
 - Fix: Hierarchical approaches, Parallelization, ...

Building Rome in a Day

The old city of Dubrovnik, 4,619 images, 3,485,717 points

Small Detour: Bundle Fusion

Limitations

- 1. Some photos can not be registered
 - Reason: blur, noise, no overlap, dynamic objects, ...
- 2. Runtime Speed (up to several weeks)
 - Fix: Hierarchical approaches, Parallelization, ...
- 3. Transitions do not look "real"
 - Better Image-based or Neural Rendering?

Enhancing Transitions

Neural Rerendering in the Wild

Moustafa Meshry¹, Dan B Goldman², Sameh Khamis², Hugues Hoppe², Rohit Pandey², Noah Snavely², Ricardo Martin-Brualla²

¹University of Maryland, ²Google Inc.

Summary

- 3D is important
- Perspective Cameras
- Structure from Motion
- Photo Tourism

