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“In forming a video loop, we assume that the
input video has already been stabilized.”

Loop regions  [Liao et al. *15]



Many ways to stabilize



Many ways to stabilize

Both at and In



Many ways to stabilize

Both at and In




Many ways to stabilize

Both at and In

1 ~ 42

!
{
] &
. A [ 4 °
> 4
i !
e )
«
N3
'




Many ways to stabilize

Both at and In

T A

4 /
4 B q“]
= [e——
. ‘ , s
y " .
N ' o
> ! '
.8 ]
> - Y
)
- '
\\
N o — —
Ve

OIS Gimbal




Many ways to stabilize

Both at and In

\ capture time j




Many ways to stabilize

Both at and In

\ capture time j




Many ways to stabilize

Both at and In

4 R

: 4




Many ways to stabilize

Both at

\ capture time

and In

manual automatic

K post préduction J

2D

3D



Many ways to stabilize

Both at and In

manual automatic

-~

3D




Recipe for video stabilization



Recipe for video stabilization



Recipe for video stabilization



Recipe for video stabilization

Raw pixels,



Recipe for video stabilization

Raw pixels,



Recipe for video stabilization



Recipe for video stabilization



Recipe for video stabilization

Input
P Raw pixels, Homography, Low pass filter, spline

frames SURF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ...



Recipe for video stabilization

Input
P Raw pixels, Homography, Low pass filter, spline

frames SURF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ...



Recipe for video stabilization

Input
pu Raw pixels, Homography, Low pass filter, spline Warp frames,

frames SURF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ...



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames

Toy example:



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames

Toy example:



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames

Toy example:



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames

Toy example:



Recipe for video stabilization

Input utput
bu Raw pixels, Homography, Low pass filter, spline Warp frames, Outp

frames SUREF, SIFT, ... 3D camera location, ... fitting, bilateral filter, ... reconstruct from 3D, ... frames

Toy example:



2D vs. 3D



2D

uuuuuu
ffffff

2D vs. 3D



Input
frames

warp

Output
frames

2D

2D vs. 3D

Input
frames

D

Output
frames




Bundled Camera Paths for
Video Stabilization

Liu et al. SIGGRAPH 2013
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Warping-based motion representation

frame t frame t+1
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Warping-based motion representation
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Distance from similarity transform
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Shape-preserving term: vV,
Distance from similarity transform

sounds familiar?...




Warping-based motion representation

E(V)=E/V)+ aE(V)
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Warping-based motion representation

We now have a Fi(t) for each cell i of frame t

frame t frame t+1
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Extensions for robust estimation

Adaptive regularization E ( ‘7) =L d( ‘7) + aLl S( ‘7)

Calculate a per frame
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Benefits of regularization
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Optimizing a single path

Data term:
blue should match ﬂ/

Smoothness term:
blue at time t should match the (60) frames around t

t

min Y | I1P(5) = COI*+ 2, Y w,(C) - ||IP() — P(r)|I?

t refl,



Detour: bilateral filter

Slides adapted from Sylvain Paris



Objective of bilateral filtering

e Smooth texture

 Preserve edges
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lllustration in 1D

1D image = line of pixels

DO [ [ [ [ ][]

Better visualized as a plot
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Gaussian blur
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Definition

Gaussian blur |
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Bilateral filter is not just for
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Bilateral filter is not just for
pixel values!

Back to stabilization...
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Optimizing a single path

min Y | IIP() — COI*>+ 4, ) @,(C) - |P(t) = P()|?

[

setting the weights /It

refl,

Run optimization with global weight
For each frame
While too much cropping or distortion
Decrease weight and re-run
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* General recipe for stabilization

Output

+ [Liu et al. *13]
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Video stablilization is important!

General recipe for stabilization I [

Input Output
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