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Fundamental problem that became 
even more relevant in recent years
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“In forming a video loop, we assume that the 
input video has already been stabilized.”

[Liao et al. ’15]
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[Liu et al. ’13]
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Recipe for video stabilization

Input 
frames

Detect features Calculate relation 
between photos

Raw pixels,  
SURF, SIFT, …

Homography,  
3D camera location, …

Smooth relation 
between photos

Create frames using 
smoothed relation

Output 
framesLow pass filter, spline 

fitting, bilateral filter, …
Warp frames, 

reconstruct from 3D, …

Toy example:

SIFT 2D translation Gaussian Warp
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2D vs. 3D

Input 
frames

Output 
frames

warp

2D

[Snavely et al. ’06]

Input 
frames

Output 
frames

3D



Bundled Camera Paths for 
Video Stabilization

Liu et al. SIGGRAPH 2013
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Given that: Data term:

∑
p

∥ ̂Vpwp − ̂p∥2

We would like:
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Shape-preserving term: 
Distance from similarity transform

sounds familiar?…



Warping-based motion representation

E( ̂V) = Ed( ̂V) + αEs( ̂V)
data shape-preserving
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Warping-based motion representation

frame t frame t+1

We now have a local homography Fi(t) for each cell i of frame t
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Outlier rejection: dual-scale RANSAC

global homographyCourse

discard outliers 
over large 
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Fine

local homographies

discard outliers 
over small 
threshold



Extensions for robust estimation
Adaptive regularization E( ̂V) = Ed( ̂V) + αEs( ̂V)

Calculate α per frame

Fitting error:  
average residual of feature matching

Smoothness error:  
L2 distance between neighboring 
homographies



Estimate for 
different α and 

pick minimal error



Benefits of regularization
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Optimizing a single path

Data term:  
blue should match red

t

min ∑
t

∥P(t) − C(t)∥2 + λt ∑
r∈Ωt

ωt,r(C) ⋅ ∥P(t) − P(r)∥2

data term smoothness term

Smoothness term:  
blue at time t should match the (60) frames around t 



Detour: bilateral filter

Slides adapted from Sylvain Paris  



Objective of bilateral filtering

• Smooth texture


• Preserve edges



Illustration in 1D
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Illustration in 1D
1D image = line of pixels

pixel
intensity

pixel position

Better visualized as a plot
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Definition
Gaussian blur

Ip = ∑
q

Gσs
(∥p − q∥)Iq

only spatial distance, intensity ignored

space

p

q

Bilateral filter [Aurich 95, Smith 97, Tomasi 98] 

spatial and range distances 

Ip =
1

Wp ∑
q

Gσs
(∥p − q∥)Gσr

(|Ip − Iq|)Iq

space

range

p

q



Example on a real image

Ä

Ä

Ä



Bilateral filter is not just for 
pixel values!



Bilateral filter is not just for 
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Back to stabilization…
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Optimizing a single path

min ∑
t

∥P(t) − C(t)∥2 + λt ∑
r∈Ωt

ωt,r(C) ⋅ ∥P(t) − P(r)∥2

data term smoothness term

setting the weights λt Run optimization with global weight 
For each frame 

While too much cropping or distortion 
Decrease weight and re-run 



Optimizing bundled paths



Optimizing bundled paths

min ∑
i

O({Pi(t)}) + ∑
t

∑
j∈N(i)

∥Pi(t) − Pj(t)∥2

single path smoothness between neighboring paths

i

N(i)
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Evaluation & Results



Comparison to previous methods



Comparison to commercial products



User study
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Recap
• Video stabilization is important!

• General recipe for stabilization

• [Liu et al. ’13]

• Bilateral filter

Detect features Calculate relation 
between photos

Smooth relation 
between photos

Create frames 
using smoothed 

relation
Input Output

space

range

p

q


