Automated Video Looping
with Progressive Dynamism

CS448V: Lecture 5
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1. Per-Pixel Loops
2. Finding a Video Loop

3. Progressive Video Loops

Per-Pixel Loops




Problem Statement
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Problem Statement

L(iB,t) — V(xa ¢(x7t))7 t > 07

qb(aj, t) is defined by s , p,

Loops for the entire video can be defined by:

S = {Sfb‘} P={pz}




“Energy”. Cost of a Solution

A solution consists of: 8§ = {Sa;} P = {px}

Want to minimize:

E(S, p) — Econsistency(sa p)

Spatiotemporal
consistency

Spatiotemporal Consistency

Econsistency(sy P) — /6

+ Estatic (S, P)

Espatial (S, P)

Penalty for choosing
static loops

+ Etemporal (87 P) |



Spatial Consistency

Espatial (S, P) — y: \II(CE, Z)
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Compatibility of
adjacent pixels x, z
over loop

Spatial Consistency
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Spatial Consistency
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Spatial Consistency
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Spatial Consistency

1 (I, ¢z, 1) — V(w, d(2, 1)1+
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Temporal Consistency
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E(S, p) — Econsistency(sa p) T

Spatiotemporal

Elstatic (57 P)

Penalty for choosing

consistency static loops
Static Loop Penalty
Estatic = E FEistatic (x)
x|pr=1
Estatic (33 ) = | Cstatic || Ystatic
Constant penalty for Scale Factor

assigning a pixel as
static




Attenuating Static Cost

If original pixel had HIGH variance, a static loop is LESS natural

If original pixel had LOW variance, a static loop is more acceptable \

Attenuating Static Penalty Measure of
Ystatic < > temporal variation

Estatic (x) = Cstatic[m1n (]- Astatic MAD ||N(37 tz x t’b_l—]-) ||)

Median Absolute \ /

Deviation Gaussian weighted
neighborhood
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Attenuating Spatiotemporal Consistency Cost

e ¥
=7 .

If original pixel had LOW variance, a loop with high variance is MORE perceptible

If original pixel had HIGH variance, a loop with high variance is LESS perceptible

Attenuating Spatiotemporal Consistency Cost

Egpatial (s, p) = Z \Ij(w, Z) Vs (CE, z) If spatial variance is high,

Y, should be small.

. 2
Etemporalzz:( ||V($,Sx) V(m78m+pm)|| _I_ 2) ,Yt(x)

If temporal variance is high,
¥, should be small.




Attenuating Spatial Consistency Cost

7s(@,2) =1/ (14 A MAD ||V (=, t:) = V(2,8

N—

Measure of spatial
variance

pixel z pixel x

Attenuating Temporal Consistency Cost

ve(x) = 1/(1 +

If spatial variance is
high, y, should be small.

\e MAD |V (=, t:) — V(= t: +1)|
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Optimization: Solving for
s={s ,Jandp={p,]

High-Level Goal

Each node is a pixel
Want to assign each pixel a value (s , p,)
wheres € s,p € p

Such that the “total energy” is minimized:

E(S, p) = Econsistency (Sa p) + EStatiC(S7 p)

Can formulate as Multilabel graph cut
problem




Review: Binary Graph Cut

e FEach node: a pixel
e Goal: Partition nodes into two

groups
e Want to minimize: 6
o Energy = cost of partition N
o Could be formulated as max
flow, min cut problem
e Global minima found in polynomial
time

Image credit: http://www.csd.uwo.ca/~yuri/Presentations/ECCV06_tutorial_partl_yuri.pdf
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Multilabel Graph Cut

e Generalization of Binary Graph Cut
(2 labels)
e NP-hard problem (3 or more labels)
e Alpha-expansion approximation
algorithm Q ‘
o Within factor of 2 of global
minima Example: 5 labels

Multilabel Graph Cut

e Assign each pixel a label: (s , p )

e From a set of candidate loops: {s} x {p}




Multilabel Graph Cut on the whole search space
doesn’t work

Search algorithm gets stuck in local minima (green = shorter periods):

Two-stage Approach

stage 1 stage 2




Two-stage Approach

Stage 1: Fix a single loop period
for the entire video, and solve
for the best start frames

Saves computation cost for
spatial consistency

Output: for each period p, each
pixel has an optimal start frame s

stage 2

stage 2




Two-stage Approach

Stage 2: Take optimal start
frames from stage 1, and solve Llp=2
for optimal start frame + loop
period for each pixel

Input
Choices for each pixel: video V

| {p} | start frames (stage one)
| {s}| start frames (p=1)

L|p=3

L|p=4
:

stage 1 stage 2
From stage one:
s, Xp,={(0,2),(2,3), (2,4),..}
Choices for stage two:
S, XP,=s, Xp,U{(0,1,(1,1,(2,1,31),..}
={(0,2),(2,3), (2,4),....,(0,1),(1,1,2,1,3,1,..}
[.:(s=0,p=2) ] [.:(s=0,p=1) ] [.:(s=1,p=1) ] [O:(s=2,p=1) ] L|p=2
() L|p=3
()
Lip=4
.
e L
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From stage one:
s, Xp,={(3,2),(53), (2,4),..}

Choices for stage two:
S,XP,=s,Xp,U{(0,1), (11,210,361, ..}

={(0,2),(2,3), (2,4),...(0,1), (1,1, (2,1, (3,1, ...}

[.:(s=3,p=z) [.:(s=o,p=1) ] [':(s=1,p=1) ] [O:(S=2,p=1) ] Lip=2
L|p=3

L|p=4
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stage 1 stage 2
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Input
video V

stage 1 stage 2
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Progressive Video Loops

Example




We Want to Control Dynamism

L={Ls|0<d<1

Pixels: either static or looping

Status: each pixel has an activation threshold a (if d > a, pixel is looping)

Overview

Recall C static: Euuic(%) =|csuicjmin (1, Astatic MA

1) Solve for most dynamic loop (d = 1)
a) C static to large value: 10
2) Create static loop (d = 0)

a) For each pixel, if static in most dynamic loop, leave as-is
b) For rest of the pixels, solve for best static frame

3) For each pixel, find activation energy a
a) Recursive binary partition over C static, re-computing d every time



Definition of d

Var(L) = Z Sm<t$/<§8rm+p (V(z,t:))

Temporal Variation of Video Loop

LOD(L)|= Var(L)/ Var(L1)

Equation to compute d for a Video Loop L

Construct Static loop

Most dynamic L; =+  Static loop L,

T TN

C static = O; penalize differences between static pixel and median color value



Recursive binary partition
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Recursive binary partition
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Recursive binary partition

Most dynamic L, =+  Static loop L, = Intermediate Loops
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Bounds activation energies:
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If looping: a <d
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Recursive binary partition
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Recursive binary partition
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Continue until d or C static stop changing
Set activation energies a to median of remaining bounds

Ordering of progressive dynamism

Estatic(x) = Cstatic MIN (17 Astatic MéAlD HN(CB, ti) —N(QZ‘, t%+1) H)

Re-order which pixels
start looping first

Estatic(x) _
Cstatic (105 — min (1, )\static M;;AXD ”N(.’E, t’b) — N(CE, Ui + 1) ||))




Result

Results: Limitations
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Thank you for listening!




