Graph Cuts, MRFs and
Graphcut Textures

CS448V — Computational Video Manipulation

April 2019
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- What makes this a “lexture"




Stochastic Regular



Stochastic Regular Texture?



Textures are everywhere!
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Graphcut Textures: Image and
Video Synthesis Using Graph Cuts

Kwatra et al. 2003




Graphcut Textures: Image and
Video Synthesis Using
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@\g/\




Graph Cuts
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Graph Cuts
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Capacity(S, T) = sum of edge weights (leaving) S

Partition (S,7) |s€ S,t €T



Max-flow Min-cut theorem




Max-flow Min-cut theorem

What is a flow?...



Max-flow Min-cut theorem




Max-flow Min-cut theorem
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Cuts & Flows



Cuts & Flows

Many variants:

- directed/undirected

- with/without terminals
- multi-cut

- non integer weights

- negative weights



Cuts & Flows

Many variants:

directed/undirected
with/without terminals
multi-cut

non integer weights
negative weights

Many many applications!
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Max Bipartite Match
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Max Bipartite Match
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we will use a similar trick...



Back to Graphcut Textures...









“Chernobyl harvest”



Where to place Which pixels to
next patch? use?



Which pixels to use?



Which pixels to use?

Graph cuts to the rescue
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Which pixels to use?

Graph cuts to the rescue

Overlap n -
cut I - Patch
Patch Patch 15 N B
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M(s, 1) = [|A(s) — B(s)[| + [|A(?) — BO)|



Which pixels to use?
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Which pixels to use?

New
Patch

Old seam cost

1 from old 4 from old
4 from new 1 from new



Which pixels to use?

New
Patch

Old seam cost

1 from old 4 from old
4 from new 1 from new

Cut at most one edge!
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Which pixels to use?
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Which pixels to use?
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Which pixels to use?

New
Patch




Which pixels to use?

Existing
Pixels

New
Patch
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What might happen if we only connect a few pixels to B?



Minor detour: MRFs



Markov Random Field



Markov Random Field

Reminder: Markov property



Markov Random Field

Reminder: Markov property
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Markov Random Field

Reminder: Markov property
“memoryless”

For a discrete process: PX,=x,|X,_=x, ,...Xg=xp) =PX,=x,|X,_,=x,_,)
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Markov Random Field

Reminder: Markov property
“memoryless”

For a discrete process: PX,=x,|X,_=x, ,...Xg=xp) =PX,=x,|X,_,=x,_,)

What about fields?

are conditionally independent
given




Markov Random Field

What does it mean in our setting?



Where to place Which pixels to
next patch? use?



Placing the next patch




Placing the next patch

e Random placement




Placing the next patch

e Random placement

* Entire patch matching




Placing the next patch

e Random placement
* Entire patch matching

e Sub-patch matching




Placing the next patch

e Random placement
* Entire patch matching

e Sub-patch matching

What would be the “right” thing to do, assuming no runtime constraints?



Results
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Image Quilting
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Video synthesis




Temporally stationary Spatio-temporally stationary
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Temporally stationary Spatio-temporally stationary

How should this affect patch search strategy?



Temporally stationary

Video Textures

Per-pixel
transition
timing

Seam optimization
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Temporally stationary Spatio-temporally stationary



Can search patches in time and space!

Spatio-temporally stationary



Can search patches in time and space!

Spatio-temporally stationary

Graph cut
(spatio-temporal)

Original

Robust results even for short sequences



——— Can search patches in time and space!

Spatio-temporally stationary

Input Resolution: 170 x 116
Output Resolution: 210 x 160

Graph cut
(spatio-temporal)

Original

Original Spatial Extension

Robust results even for short sequences Can make videos larger
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Harder to create loops. Why?

time

Solution: explicitly force beginning and end to match



Harder to create loops. Why?

time

Solution: explicitly force beginning and end to match

time
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Recap

e Jextures are everywhere!
e Add to your tool belt: Graph Cuts

 Graphcut Textures
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e Convert between different
representations of an image

Unfiltered (I5) | Filtered (B")
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What didn’t we cover?

 Many things!
 E.g., Image analogies

e Convert between different
representations of an image

o Stylization

 We will discuss these
applications later in the course
(using more recent methods)




