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Feature Tracking and
Video Textures

CS448V — Computational Video Manipulation

April 2019

Feature Tracking
Why is motion of features useful?
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Feature Tracking
Why is motion of features useful?
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Given two subsequent frames, estimate the apparent motion field 
u(x,y), v(x,y) between them

Key assumptions
• Brightness constancy:  projection of the same point looks the same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)

Estimating Optical Flow

Sl
id

e 
cr

ed
it

: 
Sa

va
re

se



4/9/19

3

I(x +u, y+ v, t) ≈ I(x, y, t −1)+ Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

Brightness Constancy Equation:

I(x, y, t −1) = I(x +u(x, y), y+ v(x, y), t)
Linearizing the right side using Taylor expansion:

I(x,y,t–1) I(x,y,t)

0»+×+× tyx IvIuIHence,

Image derivative along x

→∇I ⋅ u v[ ]T + It = 0

I(x +u, y+ v, t)− I(x, y, t −1) = Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

The brightness constancy constraint

Sl
id

e 
cr

ed
it

: 
Sa

va
re

se

Computing Derivatives
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How many equations and unknowns per pixel?

The component of the flow perpendicular to the gradient (i.e., parallel to an edge) cannot 
be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation, 
so does (u+u’, v+v’ ) if

One equation (this is a scalar equation!), two unknowns (u,v)

∇I ⋅ u ' v '[ ]T = 0

Can we use this equation to recover image motion (u,v) at each pixel?

∇I ⋅ u v[ ]T + It = 0

∇"

The brightness constancy constraint
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Actual motion

The aperture problem

Sl
id

e 
cr

ed
it

: 
Sa

va
re

se



4/9/19

5

Perceived motion

The aperture problem
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Solving the Ambiguity
How to get more equations for a pixel?

Spatial coherence constraint:
Assume the pixel’s neighbors have the same (u,v)
If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application 
to stereo vision. In Proceedings of the International Joint Conference on Artificial 

Intelligence, pp. 674–679, 1981.
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Overconstrained linear system:

Lucas-Kanade Flow

Sl
id

e 
cr

ed
it

: 
Sa

va
re

se

The summations are over all pixels in the 5 x 5 window

Least squares solution for d given by

Lucas-Kanade Flow
Overconstrained linear system:
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Optimal (u, v) satisfies Lucas-Kanade equation

When is this Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l 2 of ATA should not be too small
• ATA should be well-conditioned

– l 1/ l 2 should not be too large (l 1 = larger eigenvalue)

Conditions for Solvability
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• Eigenvectors and eigenvalues of ATA relate to edge 
direction and magnitude 
• The eigenvector associated with the larger eigenvalue points in the 

direction of fastest intensity change
• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !
(Harris corner detector…)
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– gradients very large or very small
– large l1, small l2

Edge
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– gradients have small magnitude
– small l1, small l2

Low Texture Region
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– gradients are different, large magnitudes
– large l1, large l2

High Texture Region
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Is this motion small enough?
Probably not—it’s much larger than one pixel (2nd order terms dominate)
How might we solve this problem?
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Revisiting Small Motion Assumption
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Reduce Resolution
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image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Course to Fine Estimation
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image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

run iterative L-K

run iterative L-K

warp & upsample
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Course to Fine Estimation

Optical Flow Results
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Optical Flow Results

• http://www.ces.clemson.edu/~stb/klt/
• OpenCV
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Video Puppetry: A Performative Interface for Cutout Animation. Connelly Barnes, David E. Jacobs, 
Jason Sanders, Dan B Goldman, Szymon Rusinkiewicz, Adam Finkelstein and Maneesh Agrawala, 
SIGGRAPH ASIA 2008.

http://www.ces.clemson.edu/~stb/klt/


4/9/19

13



4/9/19

14

Identification and Tracking: SIFT [Lowe 04]

+ Identifies and locates puppets
- Not real time

+ Real time
- No identification

Identification and Tracking: KLT [Tomasi 91]
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Identification and Tracking: SIFT + KLT

Group KLT points by puppet
Update transform from KLT motion
Use SIFT to correct KLT drift
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Video Textures
Video Textures. Arno Schoedl, Richard Szeliski, David Salesin and Irfan Essa,  SIGGRAPH 2000.

Weather Forecasting for Dummies™ 
Let’s predict weather:

• Given today’s weather only, we want to know tomorrow’s
• Suppose weather can only be {Sunny, Cloudy, Raining}

The “Weather Channel” algorithm:
• Over a long period of time, record:

– How often S followed by R
– How often S followed by S
– Etc. 

• Compute percentages for each state: 
– P(R|S), P(S|S), etc.

• Predict the state with highest probability!
• It’s a Markov Chain
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Markov Chain

What if we know today and yestarday’s weather? Sl
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Text Synthesis
[Shannon,’48] proposed a way to generate English-looking text using N-grams:

• Assume a generalized Markov model
• Use a large text to compute prob. distributions of each letter given N-1 previous letters 

• Starting from a seed repeatedly sample this Markov chain to generate new letters 
• Also works for whole words

WE  NEED TO EAT CAKE Sl
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Mark V. Shaney (Bell Labs)
Results (using alt.singles corpus):

• “As I've commented before, really relating to someone involves 
standing next to impossible.”

• “One morning I shot an elephant in my arms and kissed him.”
• “I spent an interesting evening recently with a grain of salt”
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Video Clips

Video Textures
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Problem Statement

video clip video texture

Our Approach

How do we find good transitions?



4/9/19

21

Finding Good Transitions 
Compute L2 distance Di, j between all frames

Similar frames make good transitions 

frame ivs.

frame j

Markov Chain Representation

2 3 41

Similar frames make good transitions 
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Transition Costs 
Transition from i to j if successor of i is similar to j

Cost function: Ci®j = Di+1, j

i

j

i+1

j-1

i j® Di+1, j

Transition Probabilities
Probability for transition Pi®j inversely related to cost:

Pi®j ~ exp ( – Ci®j / s2 )

high s low s
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Preserving Dynamics

Preserving Dynamics 
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Preserving Dynamics 
Cost for transition i®j

Ci®j =         wk Di+k+1, j+kS
k = -N

N-1

i

j j+1

i+1 i+2

j-1j-2

i j®Di, j-1 D Di+1, j i+2, j+1

i-1

Di-1, j-2

Preserving Dynamics – Effect 
Cost for transition i®j

Ci®j =         wk Di+k+1, j+kS
k = -N

N-1
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2 3 41

Dead Ends
No good transition at the end of sequence 

2 3 41

Future Cost
• Propagate future transition costs backward

• Iteratively compute new cost

Fi®j = Ci®j + a mink Fj®k
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2 3 41

Future Cost
• Propagate future transition costs backward

• Iteratively compute new cost

Fi®j = Ci®j + a mink Fj®k

2 3 41

Future Cost
• Propagate future transition costs backward

• Iteratively compute new cost

Fi®j = Ci®j + a mink Fj®k
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2 3 41

Future Cost
• Propagate future transition costs backward

• Iteratively compute new cost

Fi®j = Ci®j + a mink Fj®k

2 3 41

• Propagate future transition costs backward

• Iteratively compute new cost

Fi®j = Ci®j + a mink Fj®k

• Q-learning

Future Cost
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Future Cost – Effect

Visual Discontinuities
Problem: Visible “Jumps”
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Crossfading 
Solution: Crossfade from one sequence to the other 

Ai-2

Ai-2

Bj-2

15

…

…

3

1 2

2 1

3

4

4 4

4 4

4
+ + +

Ai-1

Ai-1/Bj-2 Ai-1/Bj-2 Ai-1/Bj-2

Bj-1

Ai

Bj

Ai+1

Bj+1

Bj+1

Crossfading



4/9/19

30

Frequent Jump & Crossfading

Video Portrait

Useful for web pages
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Combine with IBR techniques

Video Portrait – 3D

Region-Based Analysis
Divide video up into regions

Generate a video texture for each region
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Automatic Region Analysis

What if motion regions overlap in space?
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User selects target frame range

User-Controlled Video Textures

slow variable fast

Lengthen / shorten video without affecting speed

Time Warping

shorter original longer
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Video-Based Animation
Like sprites computer games

Extract sprites from real video

Interactively control  desired 
motion

©1985 Nintendo of America Inc.

Video Sprite Extraction

blue screen matting
and velocity estimation
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Ci j   =   +  angle  a bCi j® ®

vector to
mouse pointer

Similarity term Control term

velocity vector

Animation

{ {

Video Sprite Control
Augmented transition cost:

Fi j®

Fi j®

Fi j® Fi j®

Fi j®

Fi j®
Fi j®

SW

W

NW
N

NE

E

SE
S

Goal

Video Sprite Control
Need future cost computation

Precompute future costs for a few angles.

Switch between precomputed angles according to user input

[GIT-GVU-00-11]
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Interactive Fish

What would be required to create video sprite of a 
human?
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Panoramic Video Textures

Panoramic Video Textures. Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael F. 
Cohen, Brian Curless, David Salesin, Richard Szeliski.  SIGGRAPH 2005.

“Amateur” by Lasse Gjertsen
http://www.youtube.com/watch?v=JzqumbhfxRo

http://www.youtube.com/watch?v=JzqumbhfxRo
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Michel Gondry Train Video
https://www.youtube.com/watch?v=0S43IwBF0uM

https://www.youtube.com/watch?v=0S43IwBF0uM

