Data and Image Models

Maneesh Agrawala

CS 448B: Visualization Winter 2020

The big picture

task

questions, goals, assumptions

data

physical type int, float, etc. abstract type nominal, ordinal, etc.

domain

metadata semantics conceptual model conventions ____

processing algorithms

image → graphical marks visual channel

mapping

visual encoding

Topics

Properties of data Properties of the image Mapping data to images

Data models vs. Conceptual models

Data models are formal descriptions

- Math: Sets with operations on them
- Example: integers with + and × operators

Conceptual models are mental constructions

Include semantics and support reasoning

Examples (data vs. conceptual)

- 1D floats vs. temperature
- 3D vector of floats vs. spatial location

Taxonomy of Data Types

- 1D (sets and sequences)
- Temporal
- 2D (maps)
- 3D (shapes)
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)

Are there others?

The eyes have it: A task by data type taxonomy for information visualization [Schneiderman 96]

Types of variables

Physical types

- Characterized by storage format
- Characterized by machine operations

Example:

bool, short, int32, float, double, string, ...

Abstract types

- Provide descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy

Example:

plants, animals, metazoans, ...

Nominal, ordinal and quantitative

On the theory of scales of measurements S. S. Stevens, 1946

N - Nominal (labels)

Fruits: Apples, oranges, … Operations: =, ≢

O - Ordered Quality of meat: Grade A, AA, AAA

Operations: =, ≠, <, >

Q - Interval (location of zero arbitrary

Dates: Jan, 19, 2016; Loc.: (LAT 33.98, LON -118.45) Like a geometric point. Cannot compare directly Only differences (i.e. intervals) may be compared Operations: =, ≠, <, >, -

Q - Ratio (location of zero fixed)

Physical measurement: Length, Mass, Temp, ... Counts and amounts Like a geometric vector, origin is meaningful Operations: =, ≠, <, >, -, ÷

From data model to N,O,Q data type

Data model

- **32.5, 54.0, -17.3, ...**
- floats

Conceptual model

Temperature (°C)

Data type

- Burned vs. Not burned (N)
- Hot, warm, cold (O)
- Continuous range of values (Q)

Dimensions and measures

Dimensions: (~ independent variables) Often discrete variables describing data (N, O) Categories, dates, binned values

Measures: (~ dependent variables) Data values that can be aggregated (Q) Numbers to be analyzed Aggregate as sum, count, average, std. deviation

Distinction is not strict. The same variable may be treated either way depending on the task.

Example: U.S. Census Data

People Count: Year: Age: Sex: Marital Status: # of people in group
1850 - 2000 (every decade)
0 - 90+
Male, Female
Single, Married, Divorced, ...

			Α	В	С	D	F
		1	vear	age	marst	sex	people
Census: N. (D Q3	2	1850	0	0	1	1483789
		3	1850	0	0	2	1450376
		4	1850	5	0	1	1411067
- • •		5	1850	5	0	2	1359668
People Count:	Q-Ratio	6	1850	10	0	1	1260099
		7	1850 1850	10 15	0	2	1216114 1077133
Year:	Q-Interval (O)	8	1850	15	0	2	1110619
		10	1850	20	0	1	1017281
Age:	Q-Ratio (O)	11	1850	20	0	2	1003841
A90.		12	1850	25	0	1	862547
Sex:	Ν	13	1850	25	0	2	799482
JEX.	IN	14	1850	30	0	1	730638
Marital Status:	Ν	15 16	1850 1850	30 35	0	2	639636
Marital Status:	N	16	1850	35	0	2	588487 505012
		18	1850	40	0	2	475911
		19	1850	40	0	2	428185
	_	20	1850	45	0	1	384211
2348 data poin	ts	21	1850	45	0	2	341254
•		22	1850	50	0	1	321343
		23	1850	50	0	2	286580
		24 25	1850	55	0	1	194080
		25	1850 1850	55 60	0	2	187208 174976
		27	1850	60	0	2	162236
		28	1850	65	0	1	106827
		29	1850	65	0	2	105534
		30	1850	70	0	1	73677
		31	1850	70	0	2	71762
		32	1850	75	0	1	40834
		33	1850	75	0	2	40229
		34 35	1850 1850	80 80	0	1	23449 22949
		36	1850	85	0	2	22949 8186

Census: N, O, Q?

		- 4	1850	
		5	1850	
People Count:	Measure	6	1850	
		7	1850	
Year:	Dimension	8	1850	
ieur.	Dimension	9	1850	
		10	1850	
Age:	Depends!	11	1850	
	-	12	1850 1850	
Sex:	Dimension	14	1850	
		15	1850	
Marital Status:	Dimension	16	1850	
marinar states.	Dimension	17	1850	
		18	1850	
		10	4050	

2348 data points

2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208
26	1850	60	0	1	174976
27	1850	60	0	2	162236
28	1850	65	0	1	106827
29	1850	65	0	2	105534
30	1850	70	0	1	73677
31	1850	70	0	2	71762
32	1850	75	0	1	40834
33	1850	75	0	2	40229
34	1850	80	0	1	23449
35	1850	80	0	2	22949
36	1850	85	0	1	8186

В

age

1

year

1050

C

marst

D

sex

people

Relational data model

Represent data as a table (relation) Each row (tuple) represents a single record Each record is a fixed-length tuple Each column (attribute) represents a single variable Each attribute has a *name* and a *data type* A table's schema is the set of names and data types A database is a collection of tables (relations) Attributes Primary Med. Income N am e (ID) Population 3,200 4,125 2,109 4,500 3,459 Valley East Val Therese 100 101 45,000 Tuple 48 000 48,000 39,000 43,500 42,000 55,000 52,500 39,000 101 102 103 104 Capreol Eastwood Attribute valu C ardinality Lynnwood Kingsway Prince Anne Whitefish 3,443 2,986 1,998 105 105 106 107

Relational algebra [Codd 1970] / SQL

Operations on data tables: table(s) in, table out

- Projection (SELECT) select a set of columns
- Selection (WHERE) filter rows
- Sorting (ORDER BY) order rows
- Aggregation (GROUP BY, SUM, MIN, ...) partition rows into groups and summarize
- Combination (JOIN, UNION, ...) integrate data from multiple tables

Relational algebra [Codd 1970] / SQL

Projection (SELECT) - select a set of columns

select day, stock

day	stock	price	day	stock
10/3	AMZN	957.10	10/3	AMZN
10/3	MSFT	74.26	10/3	MSFT
10/4	AMZN	965.45	10/4	AMZN
10/4	MSFT	74.69	10/4	MSFT

Relational algebra [Codd 1970] / SQL

Sorting (ORDER BY) - order records

select * order by stock

day	stock	price		day	stock	price
10/3	AMZN	957.10		10/3	AMZN	957.10
10/3	MSFT	74.26	\rightarrow	10/4	AMZN	965.45
10/4	AMZN	965.45		10/3	MSFT	74.26
10/4	MSFT	74.69		10/4	MSFT	74.69

Roll-Up and Drill-Down

Want to examine population by year and age? **Roll-up** the data along the desired dimensions

Dimensions

Roll-Up and Drill-Down

Want to breakdown by marital status? Drill-down into additional dimensions

SELECT year, age, marst sum(people) FROM census GROUP BY year, age, marst

Common Data Formats

CSV: Comma-Separated Values

year,age,marst,sex,people
1850,0,0,1,1483789
1850,5,0,1,1411067

•••

Common Data Formats

CSV: Comma-Separated Values

year,age,marst,sex,people
1850,0,0,1,1483789
1850,5,0,1,1411067
...

JSON: JavaScript Object Notation

{"year":1850,"age":0,"marst":0,"sex":1,"people":1483789},
{"year":1850,"age":5,"marst":0,"sex":1,"people":1411067},
...

Announcements

Class participation requirements

- Complete readings and notebooks before class
- In-class discussion
- Post at least 1 discussion substantive comment/question per week.
 - 1 pass for the quarter

Class website https://magrawala.github.io/cs448b-wi20

Lecture/Reading Responses

Good responses typically exhibit one or more

- Critiques of arguments made in the papers/lectures
- Analysis of implications or future directions for ideas in readings/lectures
- Insightful questions about the readings/lectures

Responses should not be summaries

Discussion

Discussion is essential for effective design, evaluation and critique of visualizations

- Attendance for non-SCPD students is mandatory (you have 2 passes before it will affect your grade)
- Laptops not allowed (unless we specifically ask for them)

Assignment 1: Visualization Design

Design a static visualization for a data set.

You must choose the message you want to convey. What question(s) do you want to answer? What insight do you want to communicate?

Assignment 1: Visualization Design

Pick a guiding question, use it to title your visualization Design a static visualization for that question You are free to use any tools (including pen & paper)

Deliverables (upload via Canvas; see A1 page) PDF of your visualization with a short description including design rationale (≤ 4 paragraphs)

Due by noon on Mon Jan 13

Next Monday: Design Exercise

Will review A1submissions

So make sure you get them in on time! (noon Mon)

Will then do a redesign exercise

Make sure to bring paper, pens, etc. for sketching!

Coding information in position

- 1. A, B, C are distinguishable
- 2. Three pts colinear: B between A and C
- 3. BC is twice as long as AB
- ... Encode quantitative variables

"Resemblance, order and proportional are the three signfields in graphics." - Bertin

Encodings: Map Data to Mark Attr.

mark: lines data → size (length)

<section-header>Eacodings: Map Data to Mark Attr.Image: Colspan="2">Image: Colspan="2" Image: Colspan="" Colspan="2" Image: Colspan="2" Image: Colspan="2

Combinatorics of encodings

Challenge:

Assume 8 visual encodings and n data fields

Pick the best encoding from the exponential number of possibilities (n+1)⁸

Principles

Challenge:

Assume 8 visual encodings and n data fields

Pick the best encoding from the exponential number of possibilities (n+1)⁸

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering:

Encode the most important information in the most effective way

Mackinlay's expressiveness criteria

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Cannot express the facts

A one-to-many (1 → N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position_____

		00000															
									_	_							Ť
		0 5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
									Value								
I. Setosa	petal		000		•												
	sepal									00000	000000	0000	×				
	petal									•	00000				• •		
I. Verginica	sepal										•	•					•
	petal						٠	• ••••		00000		• •					
I. Versicolor	sepal										0000						
		0	10		20		30		10		50				70		80
		l'	10		20		30		40		50		60		70		00
									Value	•							

Expresses facts not in the data

A length is interpreted as a quantitative value; ∴ Length of bar says something untrue about N data

[Mackinlay, APT, 1986]

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily <u>perceived</u> than the information in the other visualization.

Subject of perception lecture

