NETWORK ANALYSIS

CS 448B | Fall 2023

MANEESH AGRAWALA

1

READING RESPONSE: QUESTIONS/THOUGHTS

... When **considering visualizations as a form of art or a medium for storytelling**, **how important is explaining every single detail**? This issue of lack of clarity comes up quite frequently in class and I don't think I fully understand how it is a problem. When you look at a painting, you don't expect to get an explanation for artistic choices like brush strokes. I wonder why when conveying data that those choices seem to matter so much more.

Given the drawbacks of animation that we saw listed in lecture and the advice to use it very carefully because viewers cannot track many moving objects at once, at what point should we prioritize engagement over clarity in a single viewing? [...] My thought is that a viewer can replay an animation as many times as they'd like so that they can focus on different objects of interest, but engagement is something they cannot control.

...I discovered this article on policyviz: https://policyviz.com/2019/08/06/observations-on-animation-in-data-visualization/. The article raises the point that animation is rarely necessary and is often used poorly. However, they demonstrate an example of a very effective use of animation in data visualization: bar chart races. Bar chart races are popular videos on social media platforms such as Twitter that depict changes in trends over time as a race, using animation to depict both changes in trends, as well as to tell a story over time.

3

LAST TIME: NETWORK LAYOUT

5

NODE-LINK GRAPH VISUALIZATION

Nodes connected by lines/curves

Sugiyama-Style Layout - arranged by depth

Force-Directed Layout - physical simulation

Attribute-Driven Layout - arranged by value

Constraint-Based Layout – optimization

Arc Diagrams - aligned layout

FORCE-DIRECTED LAYOUT

7

Use the Force!

http://mbostock.github.io/d3/talk/20110921/

LAYOUT BY PHYSICS SIMULATION

At each timestep, calculate forces acting on nodes. Integrate for updated velocities and positions.

D3's force layout uses **velocity Verlet** integration

Assume uniform mass m and timestep Δt : $F = ma \rightarrow F = a \rightarrow F = \Delta v / \Delta t \rightarrow F = \Delta v$

Forces simplify to velocity offsets!

12

ATTRIBUTE-DRIVEN LAYOUT

Large node-link diagrams get messy!

Can we exploit additional structure?

Idea: Use **data fields/attributes** associated with nodes or edges to perform layout (e.g., scatter plot based on node values)

Attributes may also be statistical properties of the graph

Can apply dynamic queries & brushing on attributes/fields to explore...

11/13/23

CONSTRAINT-BASED LAYOUT

Treat layout as an optimization problem

Define layout using an *energy model* along with *constraint equations* the layout should obey

Use optimization algorithms to solve:

Position Constraints

- a must be to the *left* of b
- d, c, and b must have the same **x position**
- a, b, and e must have

the same *y position*

38

OPTIMIZING AESTHETICS

Minimize edge crossings

Minimize area

Minimize line bends

Minimize line slopes

Maximize smallest angle between edges

Maximize symmetry

but, can't do it all

Optimizing these criteria is often NP-Hard, and requires approximations

max symmetries

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Force-Directed Layout - physical simulation

Attribute-Driven Layout - arranged by value

Constraint-Based Layout – optimization

Arc Diagrams - aligned layout

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Good: Structure-based analysis of hierarchical relationships

Bad: Browsing and path following due to long edges

Force-Directed Layout - physical simulation

Attribute-Driven Layout - arranged by value

Constraint-Based Layout – optimization

Arc Diagrams - aligned layout

45

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Good: Structure-based analysis of hierarchical relationships

Bad: Browsing and path following due to long edges

Force-Directed Layout - physical simulation

Good: Structure-based analysis of closely related elements **Bad:** Browsing and summarization of dense networks

Attribute-Driven Layout - arranged by value

Constraint-Based Layout – optimization

Arc Diagrams - aligned layout

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Good: Structure-based analysis of hierarchical relationships

Bad: Browsing and path following due to long edges

Force-Directed Layout - physical simulation

Good: Structure-based analysis of closely related elements

Bad: Browsing and summarization of dense networks

Attribute-Driven Layout - arranged by value

Good: Enables attribute-based analysis tasks

Bad: Difficult to design layouts appropriate to revealing attributes and network structure

Constraint-Based Layout – optimization

Arc Diagrams - aligned layout

47

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Good: Structure-based analysis of hierarchical relationships **Bad:** Browsing and path following due to long edges

Force-Directed Layout - physical simulation

Good: Structure-based analysis of closely related elements

Bad: Browsing and summarization of dense networks

Attribute-Driven Layout - arranged by value

Good: Enables attribute-based analysis tasks

Bad: Difficult to design layouts appropriate to revealing attributes and network structure

Constraint-Based Layout – optimization

Good: Graph layout based on structural/aesthetic properties

Bad: Difficult to select appropriate constraints

min # crossings

Arc Diagrams - aligned layout

NODE-LINK GRAPH VISUALIZATION

Sugiyama-Style Layout - arranged by depth

Good: Structure-based analysis of hierarchical relationships

Bad: Browsing and path following due to long edges

Force-Directed Layout - physical simulation

Good: Structure-based analysis of closely related elements

Bad: Browsing and summarization of dense networks

Attribute-Driven Layout - arranged by value

Good: Enables attribute-based analysis tasks

Bad: Difficult to design layouts appropriate to revealing attributes and network structure

Constraint-Based Layout – optimization

Good: Graph layout based on structural/aesthetic properties

Bad: Difficult to select appropriate constraints

Arc Diagrams - aligned layout

Good: Summarization and comparison of overall structure

Bad: Order matters for node layout; Structure-based and path following

49

Edge crossings and occlusions! Poor scalability...

HIERARCHICAL EDGE BUNDLING

HIERARCHICAL EDGE BUNDLING

Given a tree with additional *adjacency* edges (usually between leaves) Bundle edges with varying amounts of tension – helping to reveal common connections between subtrees

11/13/23

MATRIX DIAGRAMS

SUMMARY: TREES AND NETWORKS

Tree Layout

Indented / Node-Link / Enclosure / Layers Focus+Context techniques for scale

Graph Layout

Sugiyama Layout Force-Directed Layout Attribute-Driven Layout Constraint Layout Arc Diagrams Matrix Diagrams

64

ANNOUNCEMENTS

FINAL PROJECT

Design Review Nov 27 and 29

Data analysis/explainer

Analyze dataset in depth & make a visual explainer

Deliverables

An article with multiple different interactive visualizations Short video (2 min) demoing and explaining the project

Schedule

Project proposal: Mon 11/6

Design Review and Feedback: 9th week of quarter, 11/27 and 11/29

Final code and video: Sun 12/10 8pm

Grading

Groups of up to 3 people, graded individually Clearly report responsibilities of each member

66

FINAL PROJECT GUIDELINES

Consider the audience

Your visual explainer should be of interest to a group of people beyond your immediate circle (an explainer about your own Spotify data unlikely be of interest to others you don't know)

Pick relatively less explored topics/datasets

Do some research on what has already been done for the topic/dataset(s)

Certain data like songs (e.g. Spotify) or movies (e.g. IMDB) are already well analyzed and should be avoided, unless you want to try to take a very different angle or use innovative analysis methods

Develop a narrative

In the early stages of the analysis process, try to uncover patterns to help you form and shape a narrative through-line for the explainer

FINAL PROJECT GUIDELINES

Design visualization interactions

Choose base visualizations that can support a high level of interactivity Bubble charts, tree maps, and word clouds typically aren't the most effective choices

Design interactive features that would enable viewers to interact with the data in a way that strengthens your narrative

Tooltip is typically not enough interaction

Draw inspiration from sites like the New York Times and the Pudding

68

NETWORK ANALYSIS

11/13/23

78

Learning Objectives 1. Measures of importance/centrality 2. Extracting community structure 3. Simulating network models

DISTANCE: SHORTEST PATHS

Shortest path (geodesic path)

The shortest sequence of links connecting two nodes Not always unique

A and C are connected by 2 shortest paths $\begin{array}{c} A-E-B-C \\ A-E-D-C \end{array}$

82

DISTANCE: SHORTEST PATHS

Shortest path from 2 to 3: 1

WHEN IS DEGREE NOT SUFFICIENT?

Does not captureAbility to broker between groups
Likelihood that information originating anywhere in the network reaches you

BETWEENESS

Assuming nodes communicate using the most direct (shortest) route, how many pairs of nodes have to pass information through target node?

90

BETWEENESS - DEFINITION

$$C_B(i) = \sum_{j,k \neq i,j < k} g_{jk}(i) / g_{jk}$$

 g_{jk} = the number of shortest paths connecting jk $g_{jk}(i)$ = the number of shortest paths containing i.

Normalization:

$$C_B(i) = C_B(i)/[(n-1)(n-2)/2]$$

1

number of pairs of vertices excluding the vertex itself

92

WHEN ARE C_d, AND C_b NOT SUFFICIENT?

Does not capture

Likelihood that information originating anywhere in the network reaches you

CLOSENESS - DEFINITION

e.g., which node is closest to the center of the graph

Closeness Centrality:

$$C_c(i) = \left[\sum_{j=1, j \neq i}^{N} d(i, j)\right]^{-1}$$

Normalized Closeness Centrality

$$C_C'(i) = (C_C(i))/(N-1) = \frac{N-1}{\sum_{j=1, j \neq i}^{N} d(i, j)}$$

95

COMMUNITY STRUCTURE

CONNECTED COMPONENTS - DIRECTED

Strongly connected components

Each node in component can be reached from every other node in component by following directed links

BCDE A GH

Weakly connected components

Each node can be reached from every other node by following links in either direction

A B C D E G H F

HIERARCHICAL CLUSTERING

Process

Calculate affinity weights W for all pairs of vertices

Start: *N* disconnected vertices

Add edges (one by one) between pairs of clusters in order of decreasing weight (use closest distance to compare clusters)

Result: nested components

BETWEENESS CLUSTERING

Girvan and Newman 2002 iterative algorithm: Compute C_b of all *edges*

Remove edge i where $C_b(i) == max(C_b)$ Recalculate betweenness

SIMULATING NETWORK MODELS

137

SMALL WORLD NETWORK

Watts and Strogatz 1998

a few random links in otherwise structured graph make network a small world

regular lattice: my friend's friend is always my friend

small world: mostly structured with a few random connections

random graph: all connections random

139

DEFINING SMALL WORLD PHENOMENA

Properties

high clustering low mean shortest path

Examples

neural network of C. elegans semantic networks of languages actor collaboration graph food webs

SUMMARY Structural analysis Centrality Community structure Simulation models enable further analysis **Network analysis applicable in many domains** 145