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Reading Response Questions/Thoughts
For the final project, do you have a recommendation of a place to go to view other data 

visualization research papers that conducted user studies?

As animations contain more and more data, is it possible that we can overload or 
overstimulate the user? Can animations be harmful by being too distracting? If so, how 
can we safeguard our designs to make sure they don't cause this overstimulation?

Is there a more formal or mathematical rule set governing which colors to use to highlight 
information, and which to contrast? Or is it mostly a combination of multiple factors that 
you need to see to know? In a similar vein, do colors need to be different in shade as 
well as color for black and white printing? How do we know to vary transparency with 
color or just color?

How seriously should we take self-reported stated preferences when evaluating the strength 
of a visualization?  How much should we weight user’s expressed preference relative to 
usability, learning, and recall data when evaluating the efficacy of a visualization?
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Last Time: Animation
Understanding Motion
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How does it work?

Two-cylinder Stirling engine
http://www.keveney.com/Vstirling.html
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http://www.keveney.com/Vstirling.html
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Problems [Tversky 02]

Difficulties in understanding animation
! Difficult to estimate paths and trajectories

! Motion is fleeting and transient

! Cannot simultaneously attend to multiple motions

! Trying to parse motion into events, actions and behaviors 

! Misunderstanding and wrongly inferring causality

! Anthropomorphizing  physical motion may cause confusion or 

lead to incorrect conclusions
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Solution I: Break into static steps

Two-cylinder Stirling engine
http://www.keveney.com/Vstirling.html
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http://www.keveney.com/Vstirling.html
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Challenges
Choosing the set of steps

! How to segment process into steps? 
! Note: Steps often shown sequentially for clarity, 

rather than showing everything simultaneously

Tversky suggests
! Coarse level – segment based on objects
! Finer level – segment based on actions

! Static depictions often do not show finer level segmentation
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Animated Transitions in 
Statistical Graphics
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Log Transform
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Sorting
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Filtering
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Change Encodings
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Change Data Dimensions
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Change Data + Encodings
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Change Encodings + Axis Scales
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Visual Encoding

Change selected data 
dimensions or encodings

Animation to 
communicate changes?

Data Graphics & Transitions

23

32



12

Appropriate animation improves graphical perception

Use simple staged transitions, but doing one thing at a time 
not always best

Axis re-scaling hampers perception
Avoid if possible (use common scale)

Maintain landmarks better (delay fade out of gridlines)

Subjects preferred animated transitions

Study Conclusions
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Implementing Animation
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Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

41

1 2 3 4

Frame-based Animation
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1 2 3 4

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

Frame-based Animation
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1 2 3 4

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

clear() clear() clear()

Frame-based Animation
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Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function
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Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Transition-based Animation (Hudson & Stasko ‘93)
Specify property value, duration & easing (tweening)
Typically computed via interpolation

step(fraction) { xnow = xstart + fraction * (xend - xstart); }

Timing & redraw managed by UI toolkit
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Transition-based Animation
from: (10,10) to: (25,25)  duration: 3sec

0s 1s 2s 3s

dx=25-10
x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx
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Transition-based Animation
from: (10,10) to: (25,25)  duration: 3sec
Toolkit handles frame-by-frame updates

0s 1s 2s 3s

dx=25-10
x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx

49
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Any d3 selection can be used to drive animation.

D3 Transitions
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Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values
var bars = svg.selectAll(“rect.bars”).data(values);

D3 Transitions
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Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Static transition: update position and color of bars.
bars

.attr(“x”, (d) => xScale(d.foo))                

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));     

D3 Transitions
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Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.transition()

.attr(“x”, (d) => xScale(d.foo))                

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));

D3 Transitions
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Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.transition()

.attr(“x”, (d) => xScale(d.foo))                

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));
// Animation is implicitly queued to run!

D3 Transitions

54

bars.transition()
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
.attr(“x”, (d) => xScale(d.foo))                
…

D3 Transitions, Continued
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bars.transition()
.duration(500)                 // animation duration in ms
.delay(0)                           // onset delay in ms
.ease(d3.easeBounce)  // set easing (or “pacing”) style
.attr(“x”, (d) => xScale(d.foo))                
…

bars.exit().transition() // animate elements leaving display
.style(“opacity”, 0) // fade out to fully transparent
.remove(); // remove from DOM upon completion

D3 Transitions, Continued
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Goals: stylize animation, improve perception.
Basic idea is to warp time: as duration goes from start (0%) 
to end (100%), dynamically adjust the interpolation fraction
using an easing function.

Easing Functions

57
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http://easings.net/
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Animation is a salient visual phenomenon
Attention, object constancy, causality, timing

For processes, step-by-step static images may be preferable
For transitions, animation has some benefits, but consider 

task and timing

Summary

65

http://easings.net/
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Announcements
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Final project
Data analysis/explainer or conduct research

! Data analysis: Analyze dataset in depth & make a visual explainer
! Research: Pose problem, Implement creative solution

Deliverables
! Data analysis/explainer: Article with multiple different interactive 

visualizations
! Research: Implementation of solution and web-based demo if possible
! Short video (2 min) demoing and explaining the project

Schedule
! Project proposal: Wed 11/3
! Design Review and Feedback: 10th week of quarter
! Final code and video: Fri 12/10 11:59pm

Grading
! Groups of up to 3 people, graded individually
! Clearly report responsibilities of each member 
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Network Layout

68
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Graphs and Trees
Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as parents and children
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Tree Layout

74
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Tree Visualization
Indentation

! Linear list, indentation encodes depth

Node-Link diagrams
! Nodes connected by lines/curves

Enclosure diagrams
! Represent hierarchy by enclosure

Layering
! Layering and alignment

Tree layout is fast: O(n) or O(n log n), 
enabling real-time layout for interaction
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Indentation
Items along vertically spaced rows

Indentation shows parent/child 
relationships

Often used in interfaces
Breadth/depth contend for space

Often requires scrolling

76
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Visualizing Large Hierarchies

…

Indented Layout
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Single-Focus (Accordion) List

Separate breadth & depth in 2D
Focus on single path at a time

78
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Node-Link Diagrams
Nodes distributed in space, connected by lines
Use 2D space to break apart breadth and depth
Space used to communicate hierarchical orientation 

Typically towards authority or generality
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension

81
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
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Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem: Exponential growth of breadth

83
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Reingold & Tilford’s Tidier Layout
Goal: maximize density and 
symmetry.

Originally for binary trees, 
extended by Walker to cover 
general case.

This extension was corrected by 
Buchheim et al. to achieve a 
linear time algorithm
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Reingold-Tilford Layout
Design concerns

Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)
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Reingold-Tilford Algorithm
Initial bottom-up (postorder) tree traversal 

! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coordinates
! Sum aggregated shift
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Reingold-Tilford Algorithm

87
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

89



32

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal 
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift
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Radial Layout
Node-link diagram in polar coords

Radius encodes depth root at center

Angular sectors assigned to subtrees 
(recursive approach)

Reingold-Tilford approach can also be 
applied here
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Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation
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Visualizing Large Hierarchies

………

Indented Layout Reingold-Tilford Layout
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MC Escher, Circle Limit IV
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Hyperbolic Layout
Layout in hyperbolic space, then 
project on to Euclidean plane

Why? Like tree breadth, the 
hyperbolic plane expands 
exponentially

Also computable in 3D, projected 
into a sphere
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Degree-of-Interest Trees [AVI 04]

Space-constrained, multi-focal tree layout
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree

125

https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
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Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis until all blocks on a level fit 
within bounds

Center child blocks under parents
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree
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Enclosure Diagrams
Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth
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https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
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Circle Packing Layout
Nodes represented as sized circles

Nesting to show parent-child 
relationships

Problems: 

128

Circle Packing Layout
Nodes represented as sized circles

Nesting to show parent-child 
relationships

Problems: 
Inefficient use of space
Parent size misleading

129
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Treemaps
Hierarchy visualization that emphasizes values of nodes via 
area encoding

Partition 2D space such that leaf nodes have sizes 
proportional to data values

First layout algorithms proposed by Shneiderman et al. in 
1990, with focus on showing file sizes on a hard drive
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Slice & Dice layout: Alternate horizontal / vertical partitions.
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http://www.cs.umd.edu/hcil/treemap-history/
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Wattenberg 1998

Squarifed layout: Try to produce square (1:1) aspect ratios
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Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

https://vega.github.io/vega/examples/treemap/
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https://vega.github.io/vega/examples/treemap/
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Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?
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Error vs. Aspect Ratio [Kong 10]

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Squares

136
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Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true? 
Extreme ratios & squares-only more inaccurate.
Balanced ratios better? Target golden ratio?
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