

Colormap Design Considerations

- 1. Perceptually distinguishable colors
- 2. Value distance matches perceptual distance
- 3. Colors and concepts properly align
- 4. Aesthetically pleasing, intriguing
- 5. Respect color vision deficiencies
- 6. Should survive printing to black & white
- 7. Don't overwhelm people's capability!

Palette Design + Color Names

Minimize overlap and ambiguity of color names											
Color 1	Name [Distanc	е							Salience	Name
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Table	au-10						A	verage	0.97	.52	
						http:	//vi	s.star	nforc	l.edu/c	olor-names

Palette Design + Color Names

Minimize overlap and ambiguity of color names

			-							Salience	Name
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	.30	blue 50.5%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	.21	red 27.8%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	.34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	.55	purple 67.3%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	.20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	.39	orange 51.99
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	.13	blue 15.7%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	.16	pink 29.4%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	.12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	.30	purple 23.9%
Excel-10 Average						0.87	.27				

http://vis.stanford.edu/color-names

- 2. People segment colors into classes, perceptual banding
- 3. Naïve rainbows unfriendly to color blind viewers
- 4. Low luminance colors (blue) hide high frequencies

Classing Quantitative Data

Equal interval (arithmetic progression) Quantiles (recommended) Standard deviations Clustering (Jenks' natural breaks / 1D K-Means) Minimize within group variance Maximize between group variance

48

Quantitative color encoding

Sequential color scale

Ramp in luminance, possibly also hue Typically higher values map to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Summary

Color perception

- Better acuity for luminance than for hue
- Beware of simultaneous contrast, crispening, spreading

Color naming

Use colors that are easily distinguished by name

Color palettes

- Use small number of hues (about 6)
- Avoid rainbow palette except in special cases
- Steal well designed palettes (e.g. ColorBrewer)
- Consider sequential and diverging scales for Q data

Final project

Data analysis/explainer or conduct research

- **Data analysis**: Analyze dataset in depth & make a visual explainer
- **Research**: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple different interactive visualizations
- **Research**: Implementation of solution and web-based demo if possible
- **Short video (2 min)** demoing and explaining the project

Schedule

- Project proposal: Wed 11/3
- Design Review and Feedback: 10th week of quarter
- Final code and video: Fri 12/10 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Question

The goal of visualization is to convey information

How does animation help convey information?

Why Use Motion?

Visual variable to encode data Direct attention Understand system dynamics Understand state transition Increase engagement

Topics

Understanding motion Animated transitions in visualization Implementing animation

Motion as a visual cue

Pre-attentive

Stronger than color, shape, ...

Triggers an orientation response Motion parallax provides 3D cue More sensitive to motion at periphery

