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‘Information Visualization

To understand something is called “seeing” it. We try to
make our ideas “clear,” to bring them into “focus,” to
“arrange” our thoughts. The ubiquity of visual metaphors in
describing cognitive processes hints at a nexus of relation-
ships between what we see and what we think. When we
imagine someone hard at mental work, we might picture a
scholar drawing a diagram, a book of sources open at her
side. Or we might imagine a stockbroker, watching com-
puter displays of financial data, rushing to act on events.
Whatever the activity, mental work and perceptual interac-
tions of the world are likely to be interwoven.

This interweaving of interior mental action and external
perception (and manipulation) is no accident. It is the
essence of how we achieve expanded intelligence. As Nor-
man says,

The power of the unaided mind is highly overrated. Without ex-
ternal aids, memory, thought, and reasoning are all constrained.
But human intelligence is highly flexible and adaptive, superb at
inventing procedures and objects that overcome its own limits.
The real powers come from devising external aids that enhance
cognitive abilities. How have we increased memory, thought, and
reasoning? By the invention of external aids: It is things that
make us smart. (Norman, 1993, p. 43)

An important class of the external aids that make us smart
are graphical inventions of all sorts. These serve two related
but quite distinct purposes. One purpose is for communicat-
ing an idea, for which it is sometimes said, “A picture is worth
ten thousand words.” Communicating an idea requires, of
course, already having the idea to communicate. The second
purpose is to use graphical means to create or discover the
idea itself: using the special properties of visual perception to
resolve logical problems, as Bertin (1977/1981) would say.
Using vision to think. This second sense of graphics is the sub-
ject of this book.

Graphic aids for thinking have an ancient and venerable
history. What is new is that the evolution of computers is
making possible a medium for graphics with dramatically
improved rendering, real-time interactivity, and dramatical-
ly lower cost. This medium allows graphic depictions that

automatically assemble thousands of data objects into pic-
tures, revealing hidden patterns. It allows diagrams that
move, react, or even initiate. These, in turn, create new
methods for amplifying cognition, new means for coming to
knowledge and insight about the world. A few years ago,
the power of this new medium was applied to science, re-
sulting in scientific visualization. Now it is possible to apply
the medium more generally to business, to scholarship, and
to education. This broader application goes under the name
of information visualization. The purpose of this book is to
introduce information visualization, to collect some of the
important papers in the field, and to give samples of some
of the latest work.

EXTERNAL COGNITION

To understand the intuition behind information visualiza-
tion, it is useful to gain an appreciation for the important
role of the external world in thought and reasoning. This
notion is sometimes called external cognition (Scaife and
Rogers, 1996) to express the way in which internal and ex-
ternal representations and processing weave together in
thought. As Norman suggests, the use of the external world,
and especially the use of cognitive artifacts or physical in-
ventions to enhance cognition, is all around us.

Multiplication Aids

Take multiplication, one of the most mental of activities.
Have a person multiply a pair of two-digit numbers, such as
34 x 72, in his or her head and time how long it takes. Now
repeat the experiment with another pair of numbers, in
longhand using pencil and paper.

34
X 72
68
23%80
24'48

‘According to Paul Martin Lester, professor of communications at the University of California at Fullerton, this quotation was simply made
up by ad writer Frederick R. Barnard and included as an invented “Chinese proverb” in a streetcar advertisement for Royal Baking Powder.
The ad writer wanted to make the point that pictures can attract attention faster than other media. See http://www5.Fullerton.edu/les/ad html

and Printers’ Ink, March 10, 1927.
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FIGURE 1.1

Use of external aids amplifies ability to do multiplication.

Figure 1.1 shows the result of trying this experiment on a
hapless colleague: pencil and paper reduced the time by a
factor of five. (Too keep the story simple, we made sure that
none of the digits was 0 or 1 and that the colleague did not
know the Tractenberg or other special system for mental
multiplication). As this informal demonstration shows, vi-
sual and manipulative use of the external world amplifies
cognitive performance, even for this supposedly mental
task. And if we had chosen to multiply 3- or 4-digit num-
bers—or 25-digit numbers—then the task would have
quickly become impossible to do mentally at all (at least
without special methods).

Why does using pencil and paper make such a differ-
ence? Quite simply, mental multiplication is not itself diffi-
cult. What is difficult is holding the partial results in memo-
ry until they can be used. The visual representation, by

holding partial results outside the mind, extends a person’s
working memory. Applying this principle backwards, peo-
ple can learn apparently astonishing feats of mental arith-
metic by learning special algorithms like the Tractenberg
system that minimize internal working memory (Cutler and
McShane, 1960). The cost is in the extra effort to learn the
algorithms.

Manipulable, external visual representations like long-
hand arithmetic with paper and pencil work a different way
from the algorithmic tricks. By writing intermediate results
in neatly aligned columns (plus little numbers for carries),
the doer of multiplication creates a visual addressing struc-
ture that minimizes visual search and speeds access. An in-
ternal memory task is converted to an external visual search
and manual writing task.

External visual representations for multiplication can
work in other ways as well. The slide rule is an analogue in-
teractive visual device that represents quantities as scales
with length proportional to their logarithms. Sliding the
scales adds these lengths and hence multiplies the quantities
(Figure 1.2). Instead of aiding cognition by extending work-
ing memory, the slide rule actually does the visual computa-
tion (except for placing the decimal point). There are no
partial results at all. Slide rules are devices for interactive
manipulation of good visual representations.

Nomographs are visual devices that allow specialized
computations. The nomograph in Figure 1.3 allows visual
calculations and trade-offs for the design of a water conduit.
Water needs to be conveyed from a storage pond to a pow-
erhouse by a ditch or a pipe. At the powerhouse, it will be
converted to mechanical rotational energy and then to elec-
tric energy. The ditch will absorb some of the energy from
the water. Suppose we want to know what slope to give a
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FIGURE 1.3

Nomograph for determining friction loss in a conduit (Leckie et al.,
1975, p. 66).

trapezoidal rock ditch in order to overcome frictional losses
and deliver 7 cubic ft/sec to the powerhouse. The base of
the ditch is D = 2 ft. Its sides are inclined at 1:1.5. Water is
to be carried at a depth of d = 1 ft. We use the nomograph as
follows:

L. On the right side of the nomograph, we locate the
point corresponding to a ratio of d/D = 1/2 = 0.5 and
the line Z = 1.5 for the slope of the sides of the ditch.

2. With a ruler, we determine a line between that point
and D = 2 ft on the next scale. This determines a point
on the Center Reference Line of the diagram.

3. We now use that point and the required flow rate of 7
cfs on the Flow cfs scale to determine a new line.

4. We read our answer on the Friction Loss scale of
about 4 ft drop/1000 ft of ditch length, which equals
0.4% slope.

We could easily do “what if” calculations, just by adjusting
slightly the position of the ruler. What happens if we make
the ditch rectangular? if we use a pipe? if our requirements
for flow are changed? This reasoning, trivial with the nomo-
graph, would be difficult to do in the head (unless you were
a specialist) or even with a calculator.

Slide rules were superseded as computational devices by
pocket calculators. The lesson is that although visually
based devices can aid mental abilities, they are not the only
means of augmentation. Direct computational devices may
do as well or better. But then the direct computational de-
vices may themselves become a component of an even more
powerful visually based system. An example is the Graphing
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FIGURE 1.4

The Apple Graphing Calculator.

Calculator (Avitzur, Robins, and Newman, 1994). In Figure
1.4, the user has typed in a simple trigonometric formula to
evaluate z = cos 3r!-3. Instantly, a visualization is displayed
involving perhaps millions of computations of the sort that
would be done by a slide rule or a simple pocket calculator.
The user could not quickly absorb this many calculations.
Figure 1.4, on the other hand, produces insight that occa-
sionally surprises even people with some mathematical so-
phistication. The visualization is designed with skill. The
muted background provides orientation. Lighting is used to
give the different axes identity. The graph itself uses a check-
ered pattern and lighting effects that enhance contours. The
user can set the figure into spinning animation, highlighting
the 3D effect and revealing the figure from different angles.
If the number 3 in the formula is replaced by n, a slider con-
trol appears. The slider can vary n, showing its effect on the
graph. The slider can even be put into automatic animation.

Navigation Charts

Let us consider another example of a visual aid to cognition,
navigating at sea. Virtually all computations of a ships posi-
tion are done using a nautical chart (see Hutchins, 1996) of
the sort shown in Figure 1.5. The chart is a navigators main
representation of position, even though the chart shows a
view that no navigator ever sees. In fact, because the earth is
round and it is convenient to use flat charts, compromised
projections of the round earth on the flat chart must be used
such that graphical operations performed on the charts will
work.

A navigation chart is really a sort of visual analogue com-
puting device for navigation. With the chart, the navigator
can compute a ships compass heading to its destination if
the destination is not too far. If the trip is long, however, a
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FIGURE 1.8

Navigation chart in use (Hutchins, 1996, Figure 1.3).

constant heading becomes a spiral around the pole. A Merca-
tor projection transforms this spiral back into a straight line.
But radio beacons and the shortest line to distant points fol-
low a great circle route, which is not a straight line on either
projection. A straightedge ruler can, however, be used to plot
a great circle route as a straight line on a Lambert projection.
Each type of map sacrifices accurate representation of some
physical property of the earth, because its true purpose is to
support specific calculations. Of course, irregular features on
the earth’s surface can modify a straight route: coastline
shapes, ocean depths, political ownership of territory, navi-
gational beacons. The map is not just a calculator but also a
storage device, storing for access enormous amounts of in-
formation about the earth’s irregular features naturally lo-
cated near where they are needed for calculation.

Diagrams

Diagrams are another important class of visual aids, al-
though they are usually not interactive. Diagrams can lead
to great insight, but also to the lack of it. Tufte (1997) cites
as an example the accident of the space shuttle Challenger.
There was a question whether the shuttle should be
launched on a cold day. The decision depended on whether

the temperature would make the O-rings that sealed the
sections of the booster rockets unsafe. Figure 1.6 reprints
one of the diagrams used for this decision by the booster
rocket manufacturer to analyze earlier launch damage to the
booster seals. On the chart, boosters are shown in historical
order of launch. The choice of presentation obscures the im-
portant variables of interest: temperature is shown textually
rather than graphically; degree of damage is not mapped
onto a natural graphical scale (and there is no legend). Dia-
grams of the rockets clutter the chart, making other patterns
difficult to see. Consequently, the diagram reveals no obvi-
ous patterns. It seems to show that the incidents of damage
are relatively few.

Tufte’s chart of the same data (Figure 1.7) tells a different
story. It uses a simple scattergraph depicting the relationship
between the two major variables of interest. Different types
of damage are combined into a single index of severity. The
proposed launch temperature is also put on the chart to
show it in relation to the data. The diagram reveals a clear
pattern of damage for launches below 65°. In fact, the new
diagram shows that there was always damage below 65° and
that the most serious damage occurred at the lowest tem-
perature. It shows that the proposed launch is very much
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One of the diagrams of O-ring damage used to make the decision to
launch Challenger (Nielson, Hagen, and Muller, 1997, vol. v, p. 896).
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Scattergraph of O-ring damage index as a function of temperature
(Tufte, 1997, p. 45).




colder than this previous lowest temperature. Had the engi-
neers seen this diagram instead of Figure 1.6, it is difficult to
believe they would have recommended launch. The dia-
gram illustrates how the right representation of a problem,
often the right visual representation, can make a problem-
atic decision obvious. It also illustrates Tufte’s point that
“There are right ways and wrong ways to show data; there
are displays that reveal the truth and displays that do not”
(Tufte, 1997, p. 45).

A related but different lesson comes from the next two di-
agrams. The first of these, Figure 1.8, shows the sleep/wake
cycles of a newborn infant (Winfree, 1987). In these dia-
grams, a good representation reveals surprisingly simple
patterns embedded in massive data and great complexity.
Each line in Figure 1.8 represents time sleeping, and each
dot is a feeding. In the weeks after birth, the sleep cycle
shows considerable irregularity, but we can detect the natu-
ral 25-hour patterns exhibited by humans when they are
isolated from the light/dark cycle of the day. Around the
17th week, the infant’s sleep/wake cycle synchronizes with
the 24-hour solar day. The diagram presents every one of
some three million observations, yet allows the large-scale
pattern to be detected.

The second diagram, Figure 1.9, shows another time cy-
cle aggregated from massive data and calculations. Tides at
any given point on earth generally have a cycle of around
12 'h 26 m. A more complex picture emerges if we ask what
are all of the points on the earth that are in the same tide
phase at a given time. High tide cannot be everywhere at

Weeks after birth
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once, since there is only a fixed amount of water in the
ocean. While some places on earth are in high tide, others
must be in low tide or in between the two. The figure plots
the tidal phase of each point of earth relative to Greenwich,
England, by mapping tidal phase onto the color wheel (used
because the color wheel is circularly continuous without a
zero point). The figure reveals the surprising existence of
singularities called anphidromic points, points at which there
are no tides at all. Cotidal lines (contour lines consisting of
points at the same tide phase) circulate around these an-
phidromic points, some clockwise, some counterclockwise.
The diagram makes it possible to comprehend this phenom-
enon, which is unintuitive and made more complicated by
the irregular shape of the earth’s landmasses.

As our brief examination illustrates, visual artifacts aid
thought; in fact, they are completely entwined with cogni-
tive action. The progress of civilization can be read in the in-
vention of visual artifacts, from writing to mathematics, to
maps, to printing, to diagrams, to visual computing. As
Norman says, “The real powers come from devising external
aids that enhance cognitive abilities.” Information visualiza-
tion is about just that—exploiting the dynamic, interactive,
inexpensive medium of graphical computers to devise new
external aids enhancing cognitive abilities. It seems obvious
that it can be done. It is clear that the visual artifacts we
have discussed so far have profound effects on peoples’ abil-
ities to assimilate information, to compute with it, to under-
stand it, to create new knowledge. Visual artifacts and com-
puters do for the mind what cars do for the feet or steam
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FIGURE 1.8
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Sleep/wake cycles of a newborn infant. To make the cycles easier to see, each line starts a new day, but
three days are plotted on each line. The infant transitions from the natural human 25-hour cycle at birth to

the 24-hour solar day (Winfree, 1987, p. 31).
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COTIDAL MAP OF M; OCEAN TIOL
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FIGURE 1.9

Cotidal chart. Tide phases relative to Greenwich are plotted for all the world’s oceans. Phase progresses from red to orange to yellow to green
to blue to purple. The lines converge on anphidromic points. The dotted white line shows the route of Magellan’s ship (Winfree, 1987, p. 17).

shovels do for the hands. But it remains to puzzle out
through cycles of system building and analysis how to build
the next generation of such artifacts.

INFORMATION VISUALIZATION

Several activities are concerned with the creation of visual
artifacts, and we need to disentangle their relationships in
order to set information visualization in context. Let us start
with the notion of visualization itself, which we define as
follows:

VISUALIZATION:

The use of computer-supported, interactive, visual
representations of data to amplify cognition.

Cognition is the acquisition or use of knowledge. This def-
inition has the virtue of focusing as much on the purpose of
visualization as the means. Hamming (1973) said, “The pur-
pose of computation is insight, not numbers.” Likewise for
visualization, “The purpose of visualization is insight, not
pictures.” The main goals of this insight are discovery, deci-
sion making, and explanation. Information visualization is
useful to the extent that it increases our ability to perform
these and other cognitive activities.

Visualization dates as an organized subfield from the NSF
report, Visualization in Scientific Computing (McCormick and
DeFanti, 1987). There it is conceived as a tool to permit
handling large sets of scientific data and to enhance scien-
tists’ ability to see phenomena in the data. Although it is not
a necessity of the original conception, scientific visualiza-

tions tend to be based on physical data—the human body,
the earth, molecules, or other. The computer is used to ren-
der visible some properties. While visualizations may derive
from abstractions on this physical space, the information is
nevertheless inherently geometrical. For example, in Figure
1.10, a visualization of ozone concentration in the atmos-
phere, the visualization is based on a physical 3D represen-
tation of the earth. In Figure 1.11, a visualization of fluid
flow around a hemispherical surface, the colors of the tubes
show changes in the eigenvector of the stress tensor of flow.

Both of these visualizations show abstractions, but the ab-
stractions are based on physical space. Nonphysical infor-
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FIGURE 1.10

Ozone layer surrounding earth. L. Treinish, IBM. Used with
permission.



FIGURE 1.11

Stress tensor in a flow past a hemisphere cylinder (Lavin, Levy, and
Hesselink, 1997, Figure 5).

mation—such as financial data, business information, col-
lections of documents, and abstract conceptions—may also
benefit from being cast in a visual form, but this is informa-
tion that does not have any obvious spatial mapping. In ad-
dition to the problem of how to render visible properties of
the objects of interest, there is the more fundamental prob-
lem of mapping nonspatial abstractions into effective visual
form. There is a great deal of such abstract information in
the contemporary world, and its mass and complexity are a
problem, motivating attempts to extend visualization into
the realm of the abstract (Card, Robertson, and Mackinlay,
1991). As we saw before, visual aids to cognition benefit
from good visual representations of a problem and from in-
teractive manipulation of those representations. We define
information visualization as follows:

INFORMATION VISUALIZATION:

The use of computer-supported, interactive, visual
representations of abstract data to amplify cognition.

In Table 1.1, we have recorded a number of working defin-
itions to clarify the relationships among concepts related to
information visualization. External cognition is concerned with
the interaction of cognitive representations and processes
across the external/internal boundary in order to support
thinking. Information design is the explicit attempt to design
external representations to amplify cognition. Data graphics is
the design of visual but abstract representations of data for
this purpose. Visualization uses the computer for data graph-

TABLE 1.1
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ics. Scientific visualization is visualization applied to scientific
data, and information visualization is visualization applied to
abstract data. The reasons why these two diverge are that sci-
entific data are often physically based, whereas business in-
formation and other abstract data are often not. It should be
noted that while we are emphasizing visualization, the gen-
eral case is for perceptualization. It is just as possible to de-
sign systems for information sonification or tactilization of
data as for multiple perceptualizations. Indeed, there are ad-
vantages in doing so. But vision, the sense with by far the
largest bandwidth, is the obvious place to start, and it would
take us too far afield to cover all the senses here.

Origins of Information Visualization

These distinctions carry with them some of the historical
evolution of this area. Information visualization derives
from several communities. Work in data graphics dates from
about the time of Playfair (1786), who seems to have been
among the earliest to use abstract visual properties such as
line and area to represent data visually (Tufte, 1983). Start-
ing with Playfair, the classical methods of plotting data were
developed. In 1967, Bertin, a French cartographer, pub-
lished his theory of graphics in The Semiology of Graphics
(Bertin, 1967/1983; Bertin, 1977/1981). This theory identi-
fied the basic elements of diagrams and described a frame-
work for their design. Tufte (1983) published a theory of
data graphics that emphasized maximizing the density of
useful information. Both Bertin’s and Tufte’s theories became
well known and influential in the various communities that
led to the development of information visualization as a dis-
cipline.

Although the data graphics community was always con-
cerned with statistical graphics, Tukey (1977) began a move-
ment from within statistics with his work on Exploratory
Data Analysis. The emphasis in this work was not on the
quality of the graphics but on the use of pictures to give
rapid statistical insight into data. For example, “box and
whisker” plots allowed an analyst to see in an instant the
most important four numbers that characterize a distribu-
tion. Rocking displays allowed an analyst to see 3D scatter-
plots without special glasses. Cleveland and McGill (1988)
wrote an influential book, Dynamic Graphics for Statistics, ex-
plicating new visualizations of data in this area. A problem of
particular interest was how to visualize data sets with many
variables. Inselberg’s parallel coordinates method (Inselberg

Definitions.

External Cognition
Information design
Data graphics
Visualization
Scientific visualization
Information visualization

Use of the external world to accomplish cognition.

Design of external representations to amplify cognition.

Use of abstract, nonrepresentational visual representations of data to amplify cognition.

Use of computer-based, interactive visual representations of data to amplify cognition.

Use of interactive visual representations of scientific data, typically physically based, to amplify cognition.
Use of interactive visual representations of abstract, nonphysically based data to amplify cognition.
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and Dimsdale, 1990) and Mihalisin’s technique of cycling
through variables at different rates (Mihalisin, Timlin, and
Schwegler, 1991 @) were important contributions here.
Eick’s group worked on statistical graphics techniques for
large-scale sets of data associated with important problems in
telecommunications networks and in large computer pro-
grams (Becker et al., 1995 ®; Eick, Steffen, and Sumner,
1992 ®). The emphasis of the statisticians was on the analy-
sis of multidimensional, multivariable data and on novel
sorts of data.

In 1985, NSF launched an important new initiative on
scientific visualization (McCormick and DeFanti, 1987).
The first IEEE Visualization Conference was in 1990. This
community was led by earth resource scientists, physicists,
and computer scientists in supercomputing. Satellites were
sending back large quantities of data, so visualization was
useful as a method to accelerate its analysis and to enhance
the identification of interesting phenomena. It was also
promising as part of an effort to replace expensive experi-
ments by computational simulation (e.g., for wind tunnels).

Meanwhile, there was interest by the computer graphics
and artificial intelligence communities in automatic presen-
tation, the automatic design of visual presentations of data.
The effort was catalyzed by Mackinlay’s thesis APT (Mackin-
lay, 1986a), which formalized Bertin’s design theory, added
psychophysical data, and used it to generate presentations.
Roth and Mattis (1990) built a system to do more complex
visualizations, such as some of those from Tufte. Casner
(1991) added a representation of tasks. The concern for this
community was not so much in the quality of the graphics as
in automating the match between data types, communica-
tion intent, and graphical representations of the data.

Finally, the user interface community saw advances in
graphics hardware opening the possibility of a new genera-
tion of user interfaces. These interfaces focused on user in-
teraction with large amounts of information, such as multi-
variate databases or document collections. The first use of
the term “information visualization” to our knowledge was
in Robertson, Card, and Mackinlay (1989). Feiner and Besh-
ers (1990b) presented a method, worlds within worlds, for
showing six-dimensional financial data in immersive virtual
reality. Shneiderman (1992b) developed a technique called
dynamic queries for interactively selecting subsets of data
items and treemaps, a space-filing representation for trees.
Card, Robertson, and Mackinlay presented ways of using an-
imation and distortion to interact with large data sets in a
system called the Information Visualizer (Card, Robertson,
and Mackinlay, 1991; Robertson, Mackinlay, and Card,
1991; Mackinlay, Robertson, and Card, 1991). The concern
was again not so much the quality of the graphics as the
means for cognitive amplification. Interactivity and anima-
tion were more important features of these systems.

These initial forays were followed by refinements and
new visualizations, the different communities mutually in-
fluencing each other.
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FIGURE 1.12

Periodic table with dynamic queries sliders (Ahlberg, Williamson,
and Shneiderman, 1992, Figure 2).

Active Diagrams

Let us consider some examples of information visualization
to make clear what we mean. Our first example amplifies
the effect of a good visual representation by making it inter-
active. The periodic table, created by Mendeleyev, is an im-
portant diagram in the development of chemistry. In the pe-
riodic table, elements are arranged by the number of
protons in the atomic nucleus. The way the table is broken
into rows and its nonrectangular appearance result from the
order in which electrons populate electron subshells. Many
physical and chemical properties, such as boiling point and
chemical valence, form visual patterns when arranged by
the periodic table. In fact, in Mendeleyev lifetime, three el-
ements whose properties were predicted from the periodic
table were discovered: gallium, scandium, and germanium
(Moore, 1962).

Figure 1.12 shows an information visualization based on
the periodic table (Ahlberg, Williamson, and Shneiderman,
1992). The user can set sliders that control which of the ele-
ments in the table will be highlighted. For example, the user
can indicate interest in ionic radii between 93 and 206 and
instantly those values will be highlighted on the table. The
sliders can be used to find specific values or to see the
trends with the change of some variable. Since the periodic
table is already an excellent visual organizer of chemical
properties, adding dynamically created patterns on the table
is effective.

Large-Scale Data Monitoring

The second example uses information visualization to moni-
tor and make sense of large amounts of dynamic, real-time
data. Figure 1.13 (see Wright, 1995 @) is a depiction of visu-
alization used in a decision-support application. This is an
interest-rate, risk-hedging application for a broker-dealer’s
inventory of fixed-income instruments. The visualization is
connected to a real-time database and analytical engine. It re-
placed 100 screens of rows and columns of numbers in a tra-
ditional database reporting system. The visualization shows a
thousand bonds arranged by subportfolio along the left and
time to maturity along the front. Bonds are shown as vertical
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FIGURE 1.13

Positions on the Toronto Stock Exchange. Used by permission of Visible Decisions, Inc.

bars—the higher the bar, the larger the amount of that bond
in the portfolio. A total line along the front sums across all
subportfolios. Different types of bonds are color coded. At
the back is a yield curve. By simply grabbing the yield curve
with the mouse and moving it, the user can interactively ap-
ply what-if interest rate risk scenarios across the bonds.

Presented as a set of numbers, it would be difficult for a
human to monitor these positions and react quickly. Pre-
sented visually, it is easy both to spot the items of interest
and to tell how these relate to similar stocks or the entire
market at a certain point in time. Information visualization
is particularly useful for monitoring large amounts of data in
real time and under time pressure to make decisions.

Information Chromatography

Our third example uses a very abstract visualization of real-
time data to detect complex new patterns in very large
amounts of data: Visualization is used to detect telephone
fraud. Figure 1.14 shows a visualization of 40,000 tele-
phone calls, selected by region out of a data set of 20 million
international telephone calls. The callers are laid out on a
hexagonal grid. Display parameters have been adjusted to
call links in a certain frequency range from the call and
caller log time histograms in the lower left part of the figure.
Figure 1.14 shows the visualization of a set of related calls.
By interacting with the set of visualizations, the analyst in
this case identified a pattern in which third parties would

route calls from callers in two countries through the United
States, charging a fee but then abandoning their phones be-
fore paying the bill. Telephone fraud perpetrators change
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FIGURE1.14

Visualization used in detecting telephone fraud using Lucent
Technologies NicheWorks program (Cox, Eick, and Wills, 1997,
Figure 1). Used by permission of Lucent Technologies, Inc.
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their patterns of activity frequently to avoid automatic de-
tection algorithms. However, humans with visualization dis-
plays are good at picking out new patterns as they occur
and thus can respond to changes in the patterns quickly. In-
formation visualization allows human adaptivity to be
brought to bear for large data sets under time pressure. We
might think of this use as a kind of information chromatogra-
phy: patterns in the data are revealed by laying them out on
a particular visual substrate.

The examples of information visualization shown here
make use of the power of diagrams, but they add the ability
of computers to be interactive and to map large amounts of
data into visual forms automatically. As we can see in the ex-
amples, the improvement in cognitive performance that oc-
curs can happen for several reasons.

COGNITIVE AMPLIFICATION
Knowledge Crystallization

We have said that the purpose of information visualization
is to use perception to amplify cognition. Let us give an ex-
ample of a scenario in which this might happen:

Sue is assigned to buy a laptop computer for a workgroup.
If she wishes to make an intelligent choice, it is necessary to
understand the purchaser’s needs as well as what is on offer
in the market. Sue consults the Internet and by a combina-
tion of search and browsing acquires documents and data

sets relevant to the purchase. In addition, the purchaser ac-
quires information from colleagues and trade magazines.

The next step is to identify from materials found attri-
butes of interest like processor speed, weight, thickness,
and cost—a simple schema.’

The attributes are laid out in a table: products in rows,
features in columns. The table rows and columns are re-
ordered and some data is used to make charts. In the
process of doing this exercise, the purchaser notices that
some machines have interesting new features like high-
speed infrared communication and “fire-wire” high-speed
communication support for which there is no column. The
table is amended with a new column for each of these. The
exercise also reveals a lack of information on some of the
models. This leads the user to retrieve more information to
fill in the table. Using visualizations of table data, the user
realizes that the various models represent trade-offs among
processing power, multimedia, and portability.

The purchaser then prepares a graphical presentation of
two slides to the workgroup presenting the main trade-off
(a decision for the group) and the best purchase for each of
these trade-offs.

This scenario is an example of a knowledge crystallization
task (see Figure 1.15). A knowledge crystallization task is
one in which a person gathers information for some pur-
pose, makes sense of it (Russell et al., 1993) by construct-
ing a representational framework (which we will refer to as
a schema), and then packages it into some form for commu-
nication or action. The results could be a briefing, a short
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paper, or even a decision or action. Knowledge crystalliza-
tion tasks are characterized by the use of large amounts of
heterogeneous information, ill-structured problem solving,
but a relatively well-defined goal requiring insight into in-
formation relative to some purpose. Knowledge crystalliza-
tion tasks are one form of information-intensive work and
can themselves be part of more complex forms of knowl-
edge work, such as design. They are an important class of
tasks that motivate attempts to develop information visual-
ization.

The preceding scenario has many elements typical of
knowledge crystallization as summarized in Figure 1.15.
Lets take a closer look at these elements.

1. Information Collecting articles and data

foraging. on laptop computers.

2. Search for Identification of attributes
schema on which to compare
(representation). laptops.

3. Instantiate schema
with data. Residue

Make table of laptops x
attributes. Use a “remarks”
is significant data column to record interesting
that do not fit the properties that don't fit into
schema. To reduce  table.

residue, go to

Step 2 and improve

schema.

Reorder rows and columns
of laptop table. Create plots.
Delete or mark laptops that
are out of the running.

4. Problem-solve to
trade off features.

5. Search for a new Cluster into three groups by
schema that reduces rearranging the rows in the
the problem to a table, one each for power,
simple trade-off. multimedia capability, and

portability. Within each clus-
ter, delete all but the top one
or two machines.

6. Package the
patterns found in
some output
product.

Create concise briefing on
decision for workgroup.

Knowledge crystallization involves getting insight about
data relative to some task. This usually requires finding
some representation (schema) for the data that is efficient
for the task. Data are coded in the representation. This en-
coding leaves residue data that are unencoded or encoded
inefficiently. If the residue is too important to ignore, then
we search for a better schema. Otherwise, the residual data
are omitted. This process of abstraction (that is, schematiza-
tion) and omission of information is a fundamental princi-
ple of how an information processing organism or machine
reduces the otherwise unmanageable glut of information to
‘an amount that can be processed by mental computing
equipment with sufficient rapidity to be useful for respond-
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ing to changing environmental circumstances” (Resnikoff,
1987, p. 9). As Resnikoff puts it:

[TIhere appears to be a general Principle of Selective Omis-
sion of Information at work in all biological information pro-
cessing systems. The sensory organs simplify and organize their
inputs, supplying the higher processing centers with aggregated
forms of information which, to a considerable extent, predeter-
mine the patterned structures that the higher centers can detect.
The higher centers in their turn reduce the quantity of informa-
tion which will be processed at later stages by further organiza-
tion of the partly processed information into more abstract and
universal forms. (Resnikoff, 1987, p. 19)

Information visualization simply abets this process of pro-
ducing patterns that can be detected and abstracted.

In order to do knowledge crystallization, there must be
data, a task, and a schema. If the data are not to hand, then
information visualization can aid in the search for it. If there
is a satisfactory schema, then knowledge crystallization re-
duces to information retrieval. 1f there is not an adequate
schema, then information visualization is one of the meth-
ods by which one can be obtained.

The HomeFinder (Williamson and Shneiderman, 1992),
as shown in Figure 1.16, for instance, allows us to describe
home prices directly as a scattergraph on location and by
looking at certain ranges of house parameters such as num-
ber of bedrooms or price. The mappings of variables into vi-
sual forms constitute an initial schema. But out of the inter-
active examination of the relationships, more expensive and
larger houses, say, appear in the NW quadrant of Washing-
ton. It is possible to create a more sophisticated description
of the housing data than is directly visible at any instant: the
relative distribution of luxury apartments and low-cost
apartments in the city, where the affluent neighborhoods
are, what type of housing suitable for a single person can be
found within a 15-minute commute of the Capitol building.
This new compact description of the data is a2 new schema.
In principle, we could reexpress the data in terms of derived
concepts like “type of neighborhood,” “housing category,” or
other concepts discovered in the initial analysis.

Roughly, we want to get the most compact description
possible for a set of data relative to some task (Gell-Mann,
1994). The saying “a picture is worth ten thousand words”
is a statement claiming a particular compaction ratio (al-
though it does not state the comparison units for the picture
or the task). More precisely, what we want is a representa-
tion that allows large increases in processing efficiency rela-
tive to some task (there may be a trade-off between support-
ing a single task versus a set of tasks).

Figure 1.15 also shows the subtasks of knowledge crys-
tallization supported by information visualization. This is
intended as an approximate and suggestive list, since much
research remains to be done to understand the task itself
and the effects of information visualization design and user
behavior. We have associated subtasks with particular main
tasks of knowledge crystallization; however, many of the
subtasks could be associated with more than one task.
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FIGURE 1.16

HomeFinder (Williamson and Shneiderman, 1992). Courtesy of the University of Maryland.

Applying information visualization to knowledge crystal-
lization really means using it to do these different subtasks.
Bertin (1977/1981), for example, has called attention to the
three levels of “reading” that a diagram can serve. These ap-
pear on our diagram as Read Fact, Read Comparison, and
Read Pattern. Read Fact is visual access to a particular data
value—the price of a home, for example. Read Pattern uses
the whole diagram and picks out the largest-scale pattern—
that expensive houses occur in NW Washington, for exam-
ple. Read Comparison is at an intermediate level between
these two.

Information visualization can be applied to most parts of
knowledge crystallization. To illustrate, a few representative
systems are given in Figure 1.17. Figure 1.17(a) shows an
attempt to aid foraging by visualizing a portion of the Inter-
net. The diameter of the base represents the number of
pages in the site. The height represents the number of other
sites pointing to it. The size of the globe represents the
number of links to other sites. Figure 1.17(b) shows another
aid for foraging by providing a workspace where pages col-
lected from the Web can be arranged and grouped. To help
search for a schema, Figure 1.17(c) shows clustering of re-
trieved data. Figure 1.17(d) shows a table visualization tool
that can be used to instantiate a schema and to manipulate
cases and variables as part of problem solving. Figure
1.17(e) shows a database visualization tool being used to
find logistics resources for emergency planning. Figure
1.17(f) shows a human body made up of many thin slices,

each individually photographed and indexed and available
for retrieval.

Visualization Levels of Use

Figure 1.17 also illustrates the application of visualization
on at least four levels of use (Card, 1996): (1) visualization
of the infosphere, (2) visualization of an information work-
space, (3) visual knowledge tools, and (4) visual objects.
(See Table 1.2))

Visualization can be combined with information access
techniques to help the user find information. By the info-
sphere, we mean information outside of the user’s work envi-
ronment. This could be information on the World Wide
Web, or it could be information in a specific organizational
document collection or digital libraries. The visualization
could take the form of a virtual place as in Figure 1.17(a)
that contains all the documents, or it could be more abstract.

Visualization of an information workspace as shown in Fig-
ure 1.17(b)(c) is the use of visualization to organize possibly
multiple individual visualizations or other information
sources and tools to perform some task. The desktop meta-
phor for graphical user interfaces (GUISs) performs a similar
function. Because information needed is at hand and find-
able, the time cost of doing some task is reduced, just as a
carpentry workbench reduces the time cost of woodworking.

Most visualizations fall at the level of visual knowledge
tools, as shown in Figure 1.17(d)(e). Either they arrange in-
formation to reveal patterns, or they allow the manipulation
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(a) View of sites on the World Wide Web (Bray, 1996 @, detail from
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(b) Workspace of Web page. Courtesy of Xerox Corporation. See
Card, Robertson, and York (1996 e).

(c) Workspace for document (Risch et al., 1997 e, detail from Figure 1).
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(e) SDM tool for logistic data (Chuah et al., 1995a ®).
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TABLE 1.2

Levels at which visualization can be used.

CONTENTS

EXAMPLE

PRIMARY USE

Information outside the user’s
environment.

Information with which the user is
interacting as part of some activity.

A data set.

Infosphere
Information workspace
Visual knowledge tools

Visual objects One or more data sets packaged

for convenience.

Figure 1.17(a)
Figure 1.17(b)(c)
Figure 1.17(d)(e)

Figure 1.17(f)

Place to find information needed for work.

Place to hold work in progress. Used for reducing cost of
work, reminding user of work materials.

Substrate into which data is poured and/or tool for manipu-
lating it. Used for pattern detection, knowledge crystallization.
Packaging of data (data often known in advance). Used to
enhance objects of interaction.

of information for finding patterns, or they allow visual cal-
culations. Visual knowledge tools are sometimes called wide
widgets to emphasize that they are often not just presenta-
tions but also controls.

Visualization can also operate at the level of visually en-
hanced objects. These refer to objects, especially virtual phys-
ical objects such as the human body or a book, that have
been enhanced with visualization techniques to package
collections of abstract information. The anatomic browser in
Figure 1.17(f), for example, allows both conceptual and
spatial browsing of data on a human body.

Cost Structure

Figure 1.15 lists some of the principal steps in knowledge
crystallization. Each of those actions has a cost associated
with it based on the means available for carrying it out. The
costs are affected by the representation of information, by
the operations available for acting on that information, by
various resource capacities affecting the representations and
the operations, and by the activity statistics of how often
various operations are needed. Together these costs form a
cost structure of information, a kind of information cost
landscape.

Let us illustrate by some examples. Figure 1.18(a) shows
a portion of a map of downtown San Francisco. On the

Downtown San Francisco, CA

Downtown San Francisco, CA

(@ (b)

FIGURE 1.18

map, we have drawn iso-cost contours representing the
minimum time to walk to different locations. The operation
of walking and the map of San Francisco induce a basic cost
structure on the city. In Figure 1.18(b), we have induced a
different cost structure by driving. The iso-cost contours are
farther apart, since we can go farther for a given amount of
cost (in time). Notice also that because there are freeways in
the city, the speedup is nonuniform. Representations, de-
fined as data structures + operations + resource constraints,
induce different cost structures relative to some task we
wish to perform. A rough index of this cost structure is to
plot the number of places we could get to for a given cost.
That would be a graph with number of places that could be
visited increasing approximately as the square of the cost for
Figure 1.18(a). The line would be higher for Figure 1.18(b).

The same sort of analysis can apply to the world of infor-
mation (Card, Pirolli, and Mackinlay, 1994; Card, Robert-
son, and Mackinlay, 1991; Pirolli and Rao, 1996). Consider,
for example, an office worker as shown in Figure 1.19. In-
formation is available in the desk-side diary, through the
computer terminal, in the immediate files on the desktop,

FIGURE 1.19

Cost structure for driving and walking in San Francisco.

Idealized office layout for optimizing the cost structure of information.




through other people using the telephone, in the books in
the bookcase, and in files in the filing cabinet.

The cost structure of the information in the office has been
arranged with care. A small amount of information (either
frequently needed or in immediate use) is kept where the
cost of access is low—in an immediate workspace area, prin-
cipally the desktop. Voluminous, less used information is
kept in a higher-cost, larger-capacity secondary storage area.
More information is available in the library and other tertiary
storage areas. In addition to these simplified categories, the
information is linked and otherwise structured to aid in its
retrieval. We could plot the number of documents a user
could reach as a function of time (Figure 1.20). We call this
diagram a Cost-of-Knowledge Characteristic Function. When
visualizations are used to help foraging, then the point of a
visualization is to raise this curve. If the curve is raised, users
can either find the same amount of information in less time
or more information in the same amount of time.

The Cost-of-Knowledge Characteristic Function can help
us to understand the cost structure of visualizations that aid
foraging. Figure 1.21 shows the Spiral Calendar (Mackinlay,
Rao, and Card, 1995). In this visualization, calendar repre-
sentations at different levels of granularity are linked togeth-
er in such a way that the user can see current information
plus information at all higher levels simultaneously. Click-
ing on a part of a calendar causes that part to expand into a
more detailed calendar. The current calendar fragment (and
its parents) spiral into the background.

Figure 1.22 shows the Cost-of-Knowledge Characteristic
Function for this calendar in comparison to a conventional
one on the Sun computer. The comparison is for using only
direct point-and-click methods and does not consider
string search techniques. The analysis shows that although
the Spiral Calendar is superior for very large calendars, the
multiple-month technique of conventional calendars re-
sults in a lower cost structure for recent dates. The dotted
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Cost-of-Knowledge Characteristic Function.
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FIGURE 1.21

Spiral Calendar (Card, Pirolli, and Mackinlay, 1994, Figure 2).
Courtesy of Xerox Corporation.

lines in the figure are the calculated effects for improvement
proposals (some of which were successfully implemented).
The Cost-of-Knowledge Characteristic Function is one way
to measure the benefits of visualization at least for naviga-
tion. The example shows that making effective visualiza-
tions is not necessarily easy, even if the visualizations them-
selves are visually appealing.

How Visualization Amplifies Cognition

How does visualization amplify cognition? A classic study
by Larkin and Simon (1987) illustrates some reasons why
visualizations can be effective. Larkin and Simon compared
solving physics problems using diagrams versus using non-
diagrammatic representations. Specifically, they compared
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Cost-of-Knowledge Characteristic Function (Card, Pirolli, and
Mackinlay, 1994, Figure 5).
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the effort that had to be expended to do search, recognition,
and inference with or without the diagram. Their conclu-
sion was that diagrams helped in three basic ways: (1) By
grouping together information that is used together, large
amounts of search were avoided. (2) By using location to
group information about a single element, the need to
match symbolic labels was avoided, leading to reductions in
search and working memory. (3) In addition, the visual rep-
resentation automatically supported a large number of per-
ceptual inferences that were extremely easy for humans. For
example, with a diagram, geometric elements like alternate
interior angles could be immediately and obviously recog-
nized. Two of these ways essentially improve the Cost-of-
Knowledge Characteristic Function for accessing informa-
tion. The third reduces costs of certain operations. The key
to understanding the effectiveness of information visualiza-
tion is understanding what it does to the cost structure of a
task. Depending on the task, visualization could make a
task better—or it could make the task worse.

We propose six major ways in which visualizations can
amplify cognition (Table 1.3): (1) by increasing the memory
and processing resources available to the users, (2) by reduc-
ing the search for information, (3) by using visual represen-
tations to enhance the detection of patterns, (4) by enabling
perceptual inference operations, (5) by using perceptual at-

TABLE 1.3

tention mechanisms for monitoring, and (6) by encoding in-
formation in a manipulable medium.

Visualizations can expand processing capability by using
the resources of the visual system directly. Or they can work
indirectly by offloading work from cognition or reducing
working memory requirements for a task by allowing the
working memory to be external and visual. They can also al-
low the environment to store details, like a map stores de-
tails, close to where they need to be used. As we saw before,
if a navigator draws a course on a chart and the course hits a
rock, just those depth soundings of most relevance lie near
the line he or she has drawn.

Visualizations can reduce the search for data by grouping
or visually relating information. They can compact informa-
tion into a small space. They can allow hierarchical search
by using overviews to locate areas for more detailed search.
Then they can allow zooming in or popping up details on
demand. They can essentially index data spatially by loca-
tion and landmarks to provide rapid access.

Visualizations can allow patterns in the data to reveal
themselves. These patterns suggest schemata at a higher lev-
el. Aggregations of data can reveal themselves through clus-
tering or common visual properties.

Visualizations allow some inferences to be done very eas-
ily that are not so easy otherwise. This is why all physics

How information visualization amplifies cognition.

Increased Resources
High-bandwidth hierarchical interaction

The human moving gaze system partitions limited channel capacity so that it combines high spatial

resolution and wide aperture in sensing visual environments (Resnikoff, 1987).

Parallel perceptual processing

Offload work from cognitive to
perceptual system

Expanded working memory
Expanded storage of information
maps).
Reduced Search

Some attributes of visualizations can be processed in parallel compared to text, which is aerial.

Some cognitive inferences done symbolically can be recoded into inferences done with simple
perceptual operations (Larkin and Simon, 1987).

Visualizations can expand the working memory available for solving a problem (Norman, 1993).
Visualizations can be used to store massive amounts of information in a quickly accessible form (e.g.,

Locality of processing
High data density
Spatially indexed addressing

Enhanced Recognition of Patterns
Recognition instead of recall

Abstraction and aggregation

Visual schemata for organization
Value, relationship, trend

Perceptual Inference

Visual representations make some
problems obvious

Graphical computations
Perceptual Monitoring

Manipulable Medium

Visualizations group information used together, reducing search (Larkin and Simon, 1987).
Visualizations can often represent a large amount of data in a small space (Tufte, 1983).
By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon, 1987).

Recognizing information generated by a visualization is easier than recalling that information by the
user.

Visualizations simplify and organize information, supplying higher centers with aggregated forms of
information through abstraction and selective omission (Card, Robertson, and Mackinlay, 1991;
Resnikoff, 1987).

Visually organizing data by structural relationships (e.g., by time) enhances patterns.
Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981).

Visualizations can support a large number of perceptual inferences that are extremely easy for
humans (Larkin and Simon, 1987).

Visualizations can enable complex specialized graphical computations (Hutchins, 1996).

Visualizations can allow for the monitoring of a large number of potential events if the display is orga-
nized so that these stand out by appearance or motion.

Unlike static diagrams, visualizations can allow exploration of a space of parameter values and can
amplify user operations.




students are taught to start with a diagram of a problem and
high school math students are now taught with graphing
calculators. Visual representations can themselves be used
for specialized operations.

Thus, as Table 1.3 argues, visualization can enhance cogni-
tive effort by several separate mechanisms. These all depend
on appropriate mappings of information into visual form.

MAPPING DATA TO VISUAL FORM

We can think of visualizations as adjustable mappings from
data to visual form to the human perceiver. Figure 1.23 is a
diagram of these mappings, to serve as a simple reference
model. Using a reference model allows us to simplify our
discussion of information visualization systems and to com-
pare and contrast them. Other attempts at reference models
are discussed in Robertson and Ferrari (1994).

In Figure 1.23, arrows flow from Raw Data on the left to
the human, indicating a series of data transformations. Each
arrow might indicate multiple chained transformations. Ar-
rows flow from the human at the right into the transforma-
tions themselves, indicating the adjustment of these transfor-
mations by user-operated controls. Data Transformations map
Raw Data, that is, data in some idiosyncratic format, into
Data Tables, relational descriptions of data extended to in-
clude metadata. Visual Mappings transform Data Tables into
Visual Structures, structures that combine spatial substrates,
marks, and graphical properties. Finally, View Transforma-
tions create Views of the Visual Structures by specifying
graphical parameters such as position, scaling, and clipping.
User interaction controls parameters of these transforma-
tions, restricting the view to certain data ranges, for example,
or changing the nature of the transformation. The visualiza-
tions and their controls are used in service of some task.

The core of the reference model is the mapping of a Data
Table to a Visual Structure. Data Tables are based on math-

Data
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ematical relations; Visual Structures are based on graphical
properties effectively processed by human vision. Although
Raw Data can be visualized directly, Data Tables are an im-
portant intermediate step when the data are abstract, with-
out a direct spatial component. To give an example, text
Raw Data might start out as indexed strings or arrays.
These might be transformed into document vectors, nor-
malized vectors in a space with dimensionality as large as
the number of words. Document vectors might, in turn, be
reduced by multidimensional scaling to create Data Tables
of %, y, z coordinates that could be displayed. Whatever the
initial form, we assume in our discussion that Raw Data are
eventually transformed into the logical equivalent of Data
Tables.

The terminology of data in the literature is not consistent
(Gallop, 1994; Wong, Crabb, and Bergeron, 1996), since it
has been created by many disciplines—mathematics, statis-
tics, engineering, computer science, and graphic design.
Consequently, we set out in this section to create a data ter-
minology to be used in the remainder of this book. We have
attempted here to strike a balance between formality and
clarity (for a more formal treatment see Card and Mackinlay,
1997; Mackinlay, 1986b ® ; Mackinlay, Card, and Robertson,
1990b). A formal treatment has the virtue that it is precise,
which is critical when discussing data, because subtle differ-
ences in data often result in large differences in visualization
choices. However, clarity is just as important when visualiza-
tion techniques are being introduced and compared.

Data Tables

Raw Data comes in many forms, from spreadsheets to the
text of novels. The usual strategy is to transform this data
into a relation or set of relations that are more structured
and thus easier to map to visual forms. Mathematically, a re-
lation is a set of tuples:

{«<Value;,., Value,,),... >, <Valuejx,

iy Valuejy,... S

Visual Form

Raw ' Data '
Data Tables

Visual ' N oS

Structures
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Human Interaction

Raw Data: idiosyncratic formats

Data Tables: relations (cases by variables) + metadata
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, ...)

FIGURE 1.23

Reference model for visualization. Visualization can be described as the mapping of data to visual form that supports human

interaction in a workspace for visual sense making.
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Because this mathematical treatment omits descriptive in-
formation that is important for visualization, we create the
notion of a Data Table. A Data Table (see Table 1.4) com-
bines relations with metadata that describes those relations:

TABLE1.4
A depiction of a Data Table.
Case; Caseg; Casey
Variable, || Value;, Valuey, Valuey,
Variable, || Value;, Value;, Valuey,

An example of metadata in Table 1.4 are the labels for the
rows and columns. The rows represent variables, sets that
represent the range of the values in the tuples. The columns
represent cases, sets of values for each of the variables. To
distinguish a Data Table from other tables (used as presenta-
tions of data), we mark Data Tables with a double vertical
line on the left of the values. As we shall see, the ordering of
the rows and columns in the Data Table may or may not be
meaningful. This ordering is another example of metadata
that is important for visualization.

Tables of data are often called “cases by variables arrays,”
where the cases are the columns in Table 1.4. Cases by vari-
ables arrays are often depicted with the cases as rows and the
variables as columns, the opposite of our convention here.
This is because there are usually many more cases than vari-
ables and it is convenient to let the cases expand onto other
sheets of paper. On the other hand, when cases are years, as in
a budget, the cases are usually laid out as columns. Further-
more, our focus here is on the variables, which are important
when selecting visualizations (the cases are important when
analyzing data). Therefore, for expository convenience (large
numbers of cases are not necessary in examples), we have cho-
sen to depict Data Tables with the cases as columns and vari-
ables as rows. Bertin (1977/1981) also follows this Data Table
convention and depicts the cases as columns and the vari-
ables as rows, but he calls the cases “objects” and the variables
“characteristics.” His terminology, however, focuses on a spe-
cialized form of relation called a function, which has the math-
ematical property that variables are divided into inputs and
outputs and the input variables uniquely determine the out-
put variables. Functions from objects to their characteristics
are very common in the tasks associated with visualization.
They have one input variable and an arbitrary number of
output variables, where each case represents a unique object:

f(Case;) = <Value;,,, Valueiy,...>.

We depict functions in Data Tables by separating the input
variables from the output variables with a thick line as
shown in Table 1.5. In this table, since Case is a variable in
the Data Table, it is no longer metadata.

TABLE1.5

A function described in a Data Table with input variables shown
above the output variables. Case; represents a unique object and
the corresponding values represent the characteristics of that
object.

Case Case; Casg; Casegy
Variable, || Value;, Value;, Valuey,
Variable, || Value;, Valuey, Valuey,

One of the advantages of Data Tables is that they clearly
depict the number of variables associated with a collection
of data, an important consideration when selecting visual-
izations. “Dimensionality” is one of those terms used in dif-
ferent ways by different authors (Wong, Crabb, and Ber-
geron, 1996). Dimensionality is used to refer to the number
of input variables, the number of output variables, both to-
gether, or even the number of spatial dimensions in the
data. The term is also commonly used to describe the type
of spatial substrate of a Visual Structure. The dimensionality
of space, whether it describes data or Visual Structures, is
the most popular use of this term and how we generally use
it in this book. Two-dimensional Visual Structures are the
largest we can visualize before we have to worry about oc-
clusions, for although we live in a 3D world, our vision (un-
less we move) sees something like the inside surface of a 2D
sphere. Three-dimensional Visual Structures are the largest
we can access with our specialized human perceptual opera-
tions. We follow common usage of the term “multi” and ap-
ply multivariable to data (as opposed to visualizations),
specifically to Data Tables that have too many variables to be
encoded in a single 3D Visual Structure. Visualizations that
are specifically designed to encode such multivariable Data
Tables are called multidimensional visualizations.

Now that we have established some data terminology, we
can use Data Tables to clarify some issues associated with vi-
sualizing data. Table 1.6 describes a Data Table for films
where the cases (columns) represent films and the variables
(rows) represent properties of those films:




TABLE 1.6

A Data Table about films.
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Table 1.8 is effective for seeing the distances between cities.
Considered as a presentation, Table 1.7 is effective for see-
ing the structure of the data.

Data Tables can undergo data transformations that affect
their structure. For example, Table 1.7 could have been de-
rived by a data transformation from Table 1.9.

TABLE 1.9

Possible earlier form of Data Table 1.7.

City Basel Berlin Bern
Latitude || 47.33N 52.32N 46.57N
Longitude || 7.36E 13.25E 7.26E
Country SWTZ GER SWTZ

FilmiD 230 105 540
Title || Goldfinger Ben Hur Ben Hur
Director || Hamilton Wyler Niblo
Actor Connery Heston Novarro
Actress || Blackman Harareet McAvoy
Year 1964 1959 1926
Length 112 212 133
Popularity 7.7 8.2 7.4
Rating PG G G
Film Type Action Action Drama

This table could have been written without any input vari-
ables, but we have included one, FilmID, which is a set of
unique numbers identifying the films. The other properties
(for example, Title) do not have unique values for each case.
Such identifiers or codes are often maintained as a key by
relational databases when there is no other key for a record.
Because it is unique for a case, FilmID can be used to index a
mapping from films to marks on a spatial substrate that en-
codes them.

Most tables used to present data are not Data Tables. Take
Table 1.7, a Data Table that describes distances between
cities:

TABLE1.7

Data Table for distances.

Start City || Basel Basel Berlin
End City " Berlin Bern Bern
Distance || 860 90 930

Table 1.7 is an example of a function with two input vari-
ables. Such data is often presented as a two-way table (Table
1.8). Table 1.7 is a Data Table, whereas Table 1.8 is not. It is
an instance of a table presentation.

TABLE1.8

Atable presentation for the same distances. This is not a Data Table.

In Table 1.9, the input variable City is mapped to various
output variables, including Latitude and Longitude, which
can be used to calculate the Distance variable in Data Table
1.7. Thus, the transformation from Data Table 1.9 to Data
Table 1.7 involves both new derived values and new derived
structure. It involves new derived values because the Dis-
tance values have been computed from other values. It in-
volves new derived structure because the numbers and
identities of input and/or output variables have changed be-
tween the two Data Tables. In fact, some output variables
have been used to create a new input variable. Such Data
Table transformations are common as data are mapped to
visual form.

Data Tables can describe hierarchical and network data.
To do this, a variable is used to describe the links between
cases. For example, in Table 1.10 the variable Links de-
scribes the relationship among hypertext documents:

TABLE1.10

Data Table describing the links among hypertext documents.

DocID D; D;

/] Dk D/ Dm Dn

Length 235 54 127 | 341 | 102 186

Links [[ D) | @ | D) | & | @ |{DDy)

I Basel Berlin Bern

Basel 0 860 90
Berlin 860 0 930
Bern 90 930 0
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These links form the following hierarchy:

Links / Links

Dk Dn

Links Links
Dy J Dm

Hierarchies are specialized networks with one root and
with each child having exactly one parent. Notice that the
values of Links are sets that contain the DocIDs of the cases
(or the null set &) and that this variable represents a map-
ping from a set of cases back into itself. This self-referential
property of Links is included in the metadata associated
with Data Table 1.10.

Variable Types
Variables come in three basic types:

N = Nominal (are only = or # to other values),
O = Ordinal (obeys a < relation), or
Q = Quantitative (can do arithmetic on them).

A nominal variable N is an unordered set, such as film titles
{Goldfinger, Ben Hur, Star Wars}. An ordinal variable O is a
tuple (ordered set), such as film ratings <G, PG, PG-13, R>.
A quantitative variable Q is a numeric range, such as film
length [0, 360]. These distinctions are important, because
they determine the type of axis that should be used in a Vi-
sual Structure.

Elementary choices for data transformations derive from
the variables types. For example, quantitative variables can
be transformed into ordinal variables

Q-0
by dividing them into ranges. Film lengths (type Q)
[0, 360]
can be broken into the ranges (type O)
<Short, Medium, Long>.

This common transformation is called classing, because it
maps values onto classes of values. It creates an accessible
summary of the data, although it loses information. A more
sophisticated variation creates an additional variable that
counts the values in the ranges, leading to a histogram. A
less common transformation converts ordinal variables into
nominal variables O — N by ignoring the ordering. In the
other direction, nominal variables can be sorted to create or-
dinal variables

N — O.

For example, film titles
{Goldfinger, Ben Hur, Star Wars)
can be sorted lexicographically
<Ben Hur, Goldfinger, Star Wars>.

In addition to the three basic types of variables, there are
subtypes that represent important properties of the world
associated with specialized visual conventions. We distin-
guish the subtype

Qs = Quantitative Spatial

for intrinsically spatial variables common in scientific visu-
alization, and the subtype

Qg = Quantitative Geographical

for spatial variables that are specifically geophysical coordi-
nates.
Other important subtypes are the temporal variables

Q¢ = Quantitative Time
and
Oy = Ordinal Time.
Temporal variables have associated data transformations,
such as collecting days into weeks, months. or years. Of

course, natural numbers, used as counting numbers, are an-
other important subtype.

Metadata

Metadata is descriptive information about data (see Tweedie,
1997 ®). Metadata can be important in choosing visualiza-
tions. For example, Table 1.11 (Gallop, 1994) describes a
function from map locations to numbers.

TABLE1.11

Data Table for map numbers.

Latitude ﬂ Y, Y Yy
Longitude " X; ¢ Xy
Numbers ” Q Q Qy

If the Numbers variable represents height above sea level, the
relation represents samples from a continuous real function,
which can be interpolated to approximate a surface. On the
other hand, if Numbers represents car accidents, that is to say,
natural numbers, it is not permissible to interpolate.

An important form of metadata is the structure of a Data
Table (Tweedie, 1997 ®), which is depicted as the rows and
columns in our Data Table examples. Data transformations
often change the structure of a Data Table. A documentss lo-
cation in a semantic space could be represented using three
variables X, Y, and Z or described by a single vector vari-
able Location. A group of survey respondents could be indi-
vidual cases described by output variables Age and Sex, or



alternately the group could be classed into “cases” Age<20,
Age20-35, Age>35 with Age and Sex as input variables
whose values were sets of respondent identifier codes.

Additional metadata could be added explicitly to the Data
Table by adding, for example, a column for data type as in
Table 1.12.

TABLE 1.12

A Data Table with metadata describing the types of the variables.

FimiD | N 230 105
Tite | N Goldfinger Ben Hur
Director | N Hamilton Wyler
Actor | N Connery Heston
Actress | N Blackman Harareet
Year | O 1964 1959
Length| Q 112 212
Popularity |  Q 7.7 8.2
Rating | O PG G
Fim Type | N Action Action

Additional columns could be added for cardinality or range
of the data. Data Tables can also include relationships be-
tween variables that are not easily depicted. For example, a
business database may contain two relations: employees and
sales. The sales relation will have a variable for the person
who made the sale, which will be a subset of an employees
variable.

Data Transformations

The transformation of Raw Data into Data Tables typically
involves the loss or gain of information. Often Raw Data
contains errors or missing values that must be addressed be-
fore the data can be visualized. Statistical calculations can
also add additional information. For these reasons, Data Ta-
bles often contain derived value or structure. There are four
types of these data transformations (Tweedie, 1997 @ ):

Values — Derived Values
Structure — Derived Structure
Values — Derived Structure
Structure — Derived Values

et LR o)
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Examples of these occur in Table 1.13.

TABLE 1.13

Examples of data transformations.

Derived Value Derived Structure

Value Mean Sort
Class
Promote
Structure Demote XYZ P,

Statistical calculations, like Mean, are an example of derived
values. Sorting variables or cases is an example of derived
structure (Bertin, 1977/1981).

Transformations that switch between value and structure
are more complex. Data transformations can be concate-
nated to form chains of aggregation and classing as part of
the knowledge crystallization process shown in Figure 1.15.
Patterns can be discovered and brought forward as new
schemata by encoding them in the variables of the Data
Table. Visualizations of the Data Table can be used to detect
more patterns. User-operated controls on structural trans-
formations of the Data Table can be used as controls on the
visualization. An example of chained value and structure
transformations is the “aggregation cycle” described by
Bertin (1977/1981): Data Table 1.14 describes individuals
and their ages, income, and profession:

TABLE1.14

A Data Table describing individuals and their ages, incomes, and
professions.

Individual I 12 13 14 15 16 17 18

Ages || 55 | 18 | 22 | 51 | 34 | 50 | 28 | 17

Income 1 6 8 | 10 4 7 3 1

P1 0 0 0 0 1 0 0 0

P2 1 1 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0

P4 0 0 1 0 0 0 1 0

P5 0 0 0 0 0 0 0 1

P6 0 0 0 1 0 1 0 0

157 0 0 0 0 0 0 0 0

P8 0 0 0 0 0 0 0 0
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Ages and Income are quantitative variables. Variables P1I
through P8 represent different professions, with a “1” value
indicating that individual has that profession.

The first step in the aggregation cycle is to transform the
quantitative variables of Ages and Income into ordinal vari-
ables of age classes and income classes, creating the Data
Table 1.15 consisting entirely of binary data values:

Class (Table 1.14) on Ages and Income — Table 1.15,

where, to keep the example simple we omit specification of
the obvious parameters for specifying class boundaries,
scope of aggregation, and so on.

TABLE1.18

The age and income classes derived from Table 1.14.

Individual || I 12 31 14| 15| 16| 17 18
Age>40 1 0 0 1 0 1 0 0
Age20-40 0 0 1 0 1 0 1 0
Age0-20 0 1 0 0 0 0 0 1
Inc7-10 0 0 1 1 0 1 0 0
Inc4-6 0 1 0 0 1 0 0 0
Inc2-3 0 0 0 0 0 0 1 0
IncO-1 1 0 0 0 0 0 0 1
P1 0 0 0 0 1 0 0 0

P2 1 1 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0

P4 0 0 1 0 0 0 1 0

P5 0 0 0 0 0 0 0 1

P6 0 0 0 1 0 1 0 0

[ 0 0 0 0 0 0 0 0

P8 0 0 0 0 0 0 0 0

This transformation involves Structure — Derived Structure
with the creation of the new variables for the ranges, whose
rows are ordered. It also involves Values — Derived Values
with the calculation of the binary values for each individual
to indicate their age and income ranges.

We next generate the new Table 1.16 by aggregating indi-
viduals into their professional groups. The professions be-
come the cases and the number of individuals in each age
and income class become the new Data Values. We call this
operation promotion, meaning that a variable is promoted
into being a case (i.e., the level of the case has been pro-
moted to a higher level of aggregation):

Promote (Table 1.15) on Professions classes — Table 1.16.

TABLE1.16

Promotion of professions to cases.

PiD||P1 | P2 [P3|Pa|P5|P6]|P7]Ps

Agex40-{| OB Bt G ari o ol [
Age20-40fl 3| 1| ol o] o| of of 2
Age0-20|| © I P W i e e e |
Y e S o

2
Inc7-10 1 0
2

Inc4-6 2

Inc2-3 0 1 1 2 0 1 1 1

IncO-1 0 1 0 3 1 0 0 0

This transformation involves Structure — Derived Values
when the professions become the values for a new input
variable.

A new cycle can start from Data Table 1.16 by calculating
the mean Age and Income of each profession:

Mean (Table 1.16) on Age and Income — Table 1.17

TABLE1.17

Average age and income of the professions.

PiD|[P1 P2 | P3| P4 |P5|P6|P7|P8

AvgAge || 33 | 29 | 17 | 34 | 25 | 40 | 58 | 31

Avg Income || 6.3 | 3.7 3127 |35 [6.6 2|57

Again, this is a Values — Derived Values.
These quantitative variables can then be transformed to or-
dinal variables representing classes of median age and income:

Class (Table 1.17) on AveAge and Avelncome — Table 1.18.

TABLE1.18

Classing of average age and income.

PID|\P1 |P2 |P3|P4|P5]|P6|P7|P8

Avg Age>35 0 0 0 0 0 1 1 0
Avg Age20-35 1 1 0 1 1 0 0 1
Avg Age0-20 0 0 1 0 0 0 0 0
Avg Inc>6 1 0 0 0 0 1 0 0
Avg Inc5-6 0 0 0 0 0 0 0 1
Avg Inc4-5 0 0 0 0 0 0 0 0
Avg Inc3-4 0 1 1 0 1 0 0 0
Avg Inc<3 0 0 0 1 0 0 1 0




This is another Structure — Derived Structure transformation.
We can then treat average income as a case (Bertin calls
these statistical objects) resulting in a cross-tabulation table:

Promote (Table 1.18) on AveAge and
Avelnc classes — Table 1.19

TABLE1.19

Promotion of average income classes.

Avginc-ID || Al>6 Al5-6 Al4-5 Al3-4 Al<3
Avg Age>35 1 0 0 0 1
Avg Age20-35 1 1 0 2 1
Avg Age0-20 0 0 0 1 0

This cycle can be continued. The example, summarized in
Figure 1.24, also illustrates the complexities of data trans-
formation and the kinds of transformations we would like
to be able to visualize and maybe control through visualiza-
tions. Each of these Data Tables reveals a different aspect of
the data and may lead to a different choice of Visual Struc-
ture. We return to the problem of choosing visualizations af-
ter discussing Visual Structures and View.

VISUAL STRUCTURES

In visualization, Data Tables are mapped to Visual Structures,
which augment a spatial substrate with marks and graphical
properties to encode information. To be a good Visual Struc-
ture, it is important that this mapping preserve the data
(Mackinlay, 1986b ® ). Data Tables can often be mapped into
the visual representations in multiple ways. A mapping is said
to be expressive if all and only the data in the Data Table are
also represented in the Visual Structure. Good mappings are
difficult, because it is easy for unwanted data to appear in the
Visual Structure. For example, the visual presentation in Fig-
ure 1.25 is not expressive. It uses an ordinal axis in the Visual
Structure to express a nominal relationship in the Data Table.
It expresses visually a relationship not in the data.

The mapping must also be one that can be perceived well
by the human. A mapping is said to be more effective if it is
faster to interpret, can convey more distinctions, or leads to
fewer errors than some other mapping. In Figure 1.26, the
mapping of the sine wave into position is more effective
than the mapping into color.

| Table
> Table 1.15

Class by Promote by
Table 114 - P Table 116
age & income | ] prof

Mean

Class b; Promote b;
Table 1.17 % P Tablc 118 . P Table 1.19
avg age & inc avg inc class

FIGURE 1.24

Germany

Cascaded data transformations.
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USA

Japan

France

Sweden

Incorrect!

FIGURE 1.25

This Visual Structure is not expressive, because it implies incorrect
ordinal relationship among countries.
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FIGURE 1.26

Effectiveness of visual representations. (a) is less effective than (b)
for communicating a sine wave.

To understand effectiveness, we have to understand a few
rudimentary facts from perception. One set of such facts
concern perceptual characteristics of the different graphical
representations. But another set of facts concern the way in
which perception itself is an active system of shifting atten-
tion, a characteristic we can attempt to play to in information
visualizations.

Perception

Information visualization is clearly dependent upon the
properties of human perception. Perception is a vast and
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studied subject (see, for example, Atkinson et al., 1988:;
Boff, Kaufman, and Thomas, 1986; Kosslyn, 1994; Tovée,
1996). Until recently, however, the connection between per-
ception and cognitive activities has been tenuous (Elkind et
al., 1990), making external cognition (such as the tasks of
information visualization) difficult to study with any preci-
sion. While summarizing the literature of perception and
addressing the integration of perceptual and cognitive theo-
ries are clearly beyond the scope of this book, we can give
here a few selected facts about perception that are useful for
visualization.

Itis the job of information visualization systems to set up
visual representations of data so as to bring the properties of
human perception to bear. At the most basic level, the visual
perceptual system uses a three-level hierarchical organiza-
tion to partition limited bandwidth between the conflicting
needs for both high spatial resolution and wide aperture in
sensing the visual environment (Resnikoff, 1987). It is pos-
sible to exploit this organization in designing visualizations.

Figure 1.27 shows the human eye. A movable lens is
imaged onto a substrate of 125 million photoreceptors, com-
prising 6.5 million color-detecting cones and the rest black
and white detecting rods. Distribution of these photorecep-
tors is nonuniform (Figure 1.28). In a central area, called the
fovea, cones are dense. In outlying areas, rods with larger re-
ceptive fields predominate.

Figure 1.29 shows a logical map of the eye. The first level
of the visual system (see Resnikoff, 1987) is the retina. The
retina has an area of about 1000 mm?2 = 109 pm?2 and covers a
visual field of about 160° wide (since the two eyes are set hor-
izontally and their visual fields only partly overlap, together
they cover a visual field at the extremes roughly 200° hori-
zontally and 135° vertically). The density of cones in the
nonfoveal portions of the retina is about 0.006 cones/pm?2.
The organization of this part of the retina is good at detecting
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FIGURE 1.27

The human eye. By permission of Resnikoff (1987, Figure 5.3.2).
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FIGURE 1.28

Distribution of photoreceptors in the human eye. By permission of
Resnikoff (1987, Figure 5.3.3).
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FIGURE 1.29

Logical map of photoreceptors in the eye. By permission of
Resnikoff (1987, Figure 5.3.4).

movement or other changes in the visual environment and in
visually maintaining a rough representation of the location of
shapes previously examined. Just how little detail is available
peripherally can be seen in Figure 1.30, a photograph of a
scene processed to simulate the information available in the
various parts of the visual field.

The second level of the visual system is approximately the
foveola (the inner part of the fovea), the 400 pm2 (about 1.4°)
in the center of the visual field. The entire retinal field is the
equivalent of 7950 = 8000 foveolae. This high-resolution
field is moved to points of interest about 1 to 5 times/sec at
rates of up to 500%sec, during which vision is suppressed.



(a) (b)
FIGURE 1.30

The visual field at any instant in time. The photograph in (a) has
been processed to simulate in (b) the level of detail available at
different places in the visual field. While little detail can be seen in
the periphery, the general shapes and positions are preserved
(Tovée, 1996, Figure 10.1).

(The eye also has tiny movements—as many as 70 times/sec
—and slow pursuit movements that keep images steady.) In
fact, the eye movement mechanism is part of a more com-
plex attention mechanism including head movements and a
variable-size attention window working on the visual buffer
(Kosslyn, 1994). Automatic, stimulus-based attention shift-
ing causes this mechanism to shift toward either movement
or areas where preattentive features have identified strong
patterns of color, intensity, or size contrast. Stereoscopic pro-
cessing on the differences between the images of the two
eyes gives depth information, as does head parallax, the mov-
ing of the head to disambiguate images. Information on con-
figurations of interest are sent to two separate systems, one
that encodes spatial properties such as location, size, and ori-
entation, and another that encodes object properties such as
shape, color, and texture (Kosslyn, 1994).

The third level of the hierarchical visual system is the set
of receptors themselves within the foveola. In the foveola,
the density of cones is something like 27 times greater than
in the periphery. In fact, since the number of cones per neu-
ron is around 8:1 in the periphery versus 1:1 in the foveola,
the information density may be as much as 200 times
greater (Resnikoff, 1987).

Thus, the system maintains a constant, computationally
parallel surveillance over the entire visual field. At the same
time, it is constantly moving the position of the foveola,
sampling from the visual field to build up a percept or to at-
tend to areas of high information content, such as moving
objects. Visual perception is an active process in which
head, eye, and attention are all employed to amplify infor-
mation per unit time from the visual world.

The visual system does not work like a photograph devel-
oping in a camera but like a flying-spot scanner. It trades off
time resolution to reduce the bandwidth by something like a
factor of 8000 foveolae equivalents x 200 times greater infor-
mation density = 1.6 x 10° (or put differently, it increases the
resolution for a given available bandwidth). The visual sys-
tem knits together a remarkable illusion of continuity from
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the succession of saccades, extracting interpretations from
high-information features like sharp corners and gestalt con-
tinuity, and making invisible the missing array of receptors
where the optic nerve is attached (the “blind spot™).

To get a sense of how different a percept is than a photo-
graph, imagine a person driving a car down the freeway. The
driver looks ahead, into the rearview mirror, and occasion-
ally to the side, aware of the traffic ahead, that there is a car
too close behind, that another is passing on the right. At any
particular moment, the driver perceives more than he or she
instantaneously sees, because the percept of the traffic situa-
tion is built up from discrete visual samples of the environ-
ment. In fact, the driver will tend to sample the different vi-
sual sources roughly proportionally to the amount of
information contained in them (if there is not an informa-
tion overload). A car changing lanes will get more attention
than one whose relative position is constant.

Visual information can be processed in two different
ways, sometimes called controlled and automatic process-
ing. Controlled processing, like reading, uses mainly the
fovea. The processing is detailed, serial, low capacity, slow,
able to be inhibited, conscious. Automatic processing in con-
trast is superficial, parallel, can be processed nonfoveally,
has high capacity, is fast, cannot be inhibited, is indepen-
dent of load, unconscious, and characterized by targets
“popping out” during search. Actually, the contrast is not
quite so crisp as this comparison suggests (see Shiffrin,
1988), but the general distinction is still important and
practical. While visualizations can be designed so that de-
tail, such as textual description, is accessible by controlled
processing, coding techniques to aid search and pattern de-
tection should use features that can be automatically
processed. Color and size are typical features used to code
data visually in a form capable of automatic processing, but
the literature suggests more exotic features as well (these are
discussed later on in Table 1.22). Many of these coding
methods have not yet been tried, but because they are
known to be automatically processable, they are candidates
for constructing new visualization techniques.

There can be interaction among the visual codings of in-
formation. Indeed, part of the point of coding information
visually is to produce patterns that the eye detects from en-
sembles of components. If these interactions are unintend-
ed, however, the user will be misled. The gestalt principles
shown in Table 1.20 collect some well-known interactions.
For example, objects near each other will tend to be seen as
a cluster. Causing related objects to cluster tightly enough
for this visual effect to occur may be a reason for choosing a
particular layout algorithm. Eick and Wills (1993 @), for ex-
ample, argue that the “spring model” for object layout on a
display is not as good as their own model, because it makes
groups harder to spot.

The fact that human perception divides into focus and
periphery can be exploited, not just in coding objects but
also in setting up visual frames that serve as a substrate for
the encoding of objects and patterns. As objects are exam-
ined, their locations become visually indexed so that search
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TABLE 1.20

Gestalt principles of organization. After Tovée (1996, Table 8.2). Used with permission.

RULE BOUNDARIES

Pragnanz
Proximity
Similarity
grouped together.
Closure
Good continuation
Common fate
Familiarity

Every stimulus pattern is seen in such a way that the resulting structure is as simple as possible.
The tendency of objects near one another to be grouped together into a perceptual unit.
If several stimuli are presented together, there is a tendency to see the form in such a way that the similar items are

The tendency to unite contours that are very close to each other.

Neighboring elements are grouped together when they are potentially connected by straight or smoothly curving lines.
Elements that are moving in the same direction seem to be grouped together.

Elements are more likely to form groups if the groups appear familiar or meaningful.

time to relocate them is reduced. The dimensions of space
or patterns on the space itself, such as lines joining nodes,
may be assigned meanings. As a result, objects may form a
spatial external working memory. Enlarging working memo-
ry can lead to dramatic improvements of cognitive functions
(see, e.g., Figure 1.1). Visualizations can also be used to
store large numbers of detailed facts for rapid access (e.g.,
the periodic table or a ship chart).

Spatial Substrate

Not only are there characteristic limits to the perceptual sys-
tem, there are also representational limits to graphics as a
medium. The number of basic mappings of Data Tables to
Visual Structures is actually smaller than might be sup-
posed, because there are a limited number of components
from which Visual Structures are composed. Visual Struc-
tures are made from spatial substrate, marks, and the marks’
graphical properties (Mackinlay, 1986a). This limited set was
identified by Bertin (1977/1981), expanded by Mackinlay
(Card and Mackinlay, 1997; MacEachren, 1995; Mackinlay,
1986b @), and expanded further here. Other properties, as
we shall argue, are possible, but most visualizations will
probably continue to be made from this basic set.

The most fundamental aspect of a Visual Structure is its use
of space. Space is perceptually dominant (see MacEachren,
1995). Spatial position is such a good visual coding of data
that the first decision of visualization design is which vari-
ables get spatial encoding at the expense of others. One rea-
son for the effectiveness of Tufte’s Challenger diagram is that
he maps the most important variables onto spatial position
in X and Y, the most potent representation properties of the
Visual Structure. Like other visual features, spatial position
can be used to encode the variables of Data Tables. But be-
cause of its dominance, we treat it separately from these
other features as a substrate into which other parts of a Vi-
sual Structure are poured.

Empty space itself, as a container, can be treated as if it
has metric structure. We describe this structure in terms of
axes and their properties. There are four elementary types of
axes:

U = Unstructured Axis (no axis) (Engelhardt et al., 1996),

N = Nominal Axis (a region is divided into subregions),

O = Ordinal Axis (the ordering of these subregions is
meaningful), and

Q = Quantitative Axis (a region has a metric).

Further subdivision of the quantitative axis is possible, ,
namely, whether the quantitative axis has interval or ratio l
properties. There are also important specializations to physi- |
cal coordinates (a quantitative axis with physical units) or
geographical coordinates (the specialized physical coordi-
nates of latitude and longitude). But this simple division suf-
fices for our present purposes. Axes can be linear or radial.

Axes are an important building block for developing Visu-
al Structures. The FilmFinder (Ahlberg and Shneiderman,
1994b) in Figure 1.31 augments a scatterplot with a collec-
tion of user interface sliders and radio buttons. These allow
rapid query specification through direct manipulation,
which is coupled with instantaneous feedback. Based on the
Data Table for the FilmFinder in Table 1.6, we represent the
scatterplot as composed of two orthogonal quantitative axes:

Year — Q,,
Popularity — Q-
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FIGURE 1.31

The FilmFinder. Courtesy of the University of Maryland. See
Ahlberg and Shneiderman (1994b).



The notation states that the Year variable is mapped to a
quantitative X-axis and the Popularity variable is mapped to
a quantitative Y-axis. Information is encoded by mapping
the cases, which are represented by the FilmID variable, to
points:

FilmID — P
Positioning these points on the axes:
FilmID (Year, Popularity) — P(Q,, Qy)

encodes the year and popularity of the films.

Other axes are used for the FilmFinder query widgets.
For example, an ordinal axis is used in the radio buttons for
film ratings,

Ratings — O,
A nominal axis is used in the radio buttons for film type,
FilmType — N,

Since spatial position is such a good encoding, several
techniques have been developed to increase the amount of
information that can be encoded with it:

¢ Composition
® Alignment
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® Folding
® Recursion
® Overloading

Composition (Mackinlay, 1986b ® ) is the orthogonal place-
ment of axes, creating a 2D metric space. The FilmFinder
scatterplot in Figure 1.31 creates such a space where a per-
son directly perceives relationships between film popularity
and their year of production. This technique is powerful for
up to two variables and still potent up to three dimensions.
Even at three dimensions, if the content of the resulting cube
is dense, we have the problem of seeing inside.

Alignment (Mackinlay, 1986b @) is the repetition of an
axis at a different position in the space. For example, the
bond market visualization in Figure 1.13 shows the align-
ment of two Visual Structures on a common X-axis, repre-
senting time. The Visual Structure on the floor representing
individual bond performance is aligned with the yield curve
on the back wall.

Folding is the continuation of an axis in an orthogonal di-
mension. Figure 1.32 is a visualization of a large computer
program. Each software module is represented as an axis
consisting of line marks to represent the text lines of the
program. These axes (oriented in the Y-direction) are folded
when they are too long to fit in the window by using space

SeeSoft uses a folded axis when a software module is too large to fit in the height of the window. Courtesy
of Lucent Technologies. See Eick, Steffen, and Sumner (1992 @). Used with permission of Lucent Bell

Laboratories.
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offset in the X-direction from the already used space. This
visualization is also an example of axis alignment because of
the alignment of the ordinal position of the text lines.

Recursion is the repeated subdivision of space. Figure
1.33 is a screen shot from Pad++ (Bederson and Hollan,
1994 @) that provides interactive zoom into a recursive
space of directories and files. A folded axis creates the top-
level partitioning of the space into a set of rectangles that
represent directories. Inside each of these regions are addi-
tional axes that recursively partition the space.

Overloading is the reuse of the same space for the same
Data Table. In the worlds within worlds technique (Feiner
and Beshers, 1990b ®), shown in Figure 1.34, the meaning

FIGURE 1.33

Pad++ provides interactive zoom into a recursive space of
directories and files. Courtesy of Jim Hollan. See Bederson and
Hollan (1994 e).

FIGURE 1.34

Worlds within worlds (Feiner and Beshers, 1993, Figure 2)
overloads space to visualize multivariable data tables.

of one coordinate system is determined by its placement in-
side another. The technique plays heavily on the fact that
the data occupies only a portion of the committed space, al-
lowing that space to be recommitted to a second use. Be-
cause this overloading is dynamically controlled by the user
in this application, the user may be willing to accept some
occlusion.

Marks

Marks are the visible things that occur in space. There are
four elementary types of marks (Figure 1.35):

P = Points (0D or zero dimensional),
L = Lines (1D),

A = Areas (2D), and

V = Volumes (3D).

Area marks include surfaces in three dimensions as well as
2D-bounded regions.

Unlike their mathematical counterpart, point and line
marks actually take up space (otherwise they would be in-
visible) and may have properties like shape. They take up
space to signify something that does not.

Connection and Enclosure

Point marks and line marks can be used to signify another
sort of topological structure: Graphs and Trees. These allow
relations among objects (e.g., Table 1.10) to be shown with-
out the geometrical constraints implicit in mapping vari-
ables onto spatial axes:

Links — Connection.

Figure 1.36 is a screen shot of the hyperbolic tree (Lamping
and Rao, 1996 ® ), a visualization that uses a hyperbolic pro-
jection to show more detail in the vicinity of some focal point.
The position of the nodes is used to make the objects more
visually salient rather than encoding information directly.
Trees and graphs also use position to create gestalt prop-
erties such as proximity or closure (see Table 1.20). Because
these are easily picked up as perceptual features, they can
encode additional information such as clustering or partial
trends. Trees typically start with a root node and continue
with levels that represent the generations of children nodes.

Points
Lines

Areas

FIGURE 1.35

Types of marks.
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Hyperbolic tree. See Lamping and Rao (1996 e). Courtesy of Xerox
Corporation.

These levels form an implicit ordinal axis that encodes the
distance of a node to the root even when the Raw Data does

GTREEMAP

FIGURE 1.37
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not include this information explicitly, as in the radial axis
in the hyperbolic tree. Constellations of data relations can
trigger these as emergent visual properties, signaling the ex-
istence of the underlying data relation. However, as we have
noted, care must be taken not to inadvertently express in-
correct information (Mackinlay, 1986b e ).

Enclosure can also be used to encode hierarchies:

Links — Enclosure.

Figure 1.37 is a treemap (Johnson and Shneiderman, 1991),
mapping a library system into nested rectangles. The size of
the rectangles is determined by the number of books. The
hierarchy determines the nesting. Color indicates frequency
of use (redder is more frequent).

Retinal Properties

Other graphical properties were called retinal properties by
Bertin (1967/1983), because the retina of the eye is sensitive
to them independent of position. For example, the Film-
Finder in Figure 1.31 uses color to encode information in
the scatterplot:

FilmID (FilmType) — P(Color)

This notation says that the FilmType attribute for any FilmID
case is visually mapped onto the color of a point.

Table 1.21 shows Bertin’ six “retinal variables” separated
into spatial properties and object properties according to

Treemap of Dewey decimal classification. Courtesy of the University of Maryland.
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TABLE 1.21

TABLE 1.23

Retinal properties.

Spatial Object

Extent (Position) —|—I—| | GrayScale [lj i} B [
Size @ @ o -

Coor M BB

Dif- Orientation 5y | ¢ R

:g'en- shape lY @ @

which area of the brain they are believed to be processed
(Kosslyn, 1994). They are cross-separated according to
whether the property is good for expressing the extent of a
scale (has a natural zero point) or whether its principal use
is for differentiating marks (Bertin, 1977/1981). Spatial po-
sition, discussed earlier as basic visual substrate, is shown in
the position it would occupy in this classification.

Other graphical properties have also been proposed for
encoding information. For example, MacEachren (1995)
proposes crispness (the inverse of the amount of distance
used to blend two areas or a line into an area), resolution
(grain with raster or vector data will be displayed), trans-
parency, and arrangement (e.g., different ways of configuring
dots). He further proposes dividing color into value (essen-
tially the gray level of Table 1.21), hue, and saturation. The
usefulness of these requires testing. On the other hand,
graphical properties from the perception literature that can
support automatic visual processing (or at least preattentive
processing) are other obvious candidates for coding vari-
ables. Several of these are collected in Table 1.22 from
Healy, Booth, and Enns (1995). For example, lighting direc-
tion might be usable as a visual coding dimension in a Visu-
al Structure, although to our knowledge this has not yet
been attempted. We will use the retinal properties in Table
1.21 because they are a good basic set for our purposes, but
it should be remembered that there are other possibilities.

Some retinal properties are more effective than others for
encoding information. Position, for example, is by far the
most effective all-around representation. Many properties
are more effective for some types of data than for others.
Grayscale, for example, is effective when used comparative-
ly for ordinal variables, but is not very effective for encoding

TABLE 1.22

Visual features that can be automatically processed (Healy,
Booth, and Enns, 1995).

Number Terminators Direction of motion
Line orientation Intersection Binocular luster
Length Closure Stereoscopic depth
Width Color 3D depth cues
Size Intensity Lighting direction
Curvature Flicker

Relative effectiveness of different retinal properties. Data
based on MacEachren (1995, Figure 6.30). Q = Quantitative
data, O = Ordinal data, N = Nominal data. Filled circle
indicates the property is good for that type of data. Half-
filled circle indicates the property is marginally effective,
and open circle indicates it is poor.

Spatial Q O N Object Q
(Position) | ® | ® | ® |Grayscae ([ ® | @® (O
Extent
Size | @ | @ | @
|0 @ Color
Differential | Orientation Texture
Shape

absolute quantitative variables. Table 1.23 gives the relative
effectiveness of different retinal properties.

Temporal Encoding

Visual Structures can also encode information temporally:
Human perception is very sensitive to changes in mark posi-
tion and their retinal properties. We need to distinguish be-
tween temporal Data Tables that need to be visualized, as in

Q; — some visual representation
and animation, that is, time used as part of a Visual Structure:
some variable — Time.

Time as animation could encode any type of data (whether
it would be an effective encoding is another matter).

Time as animation, of course, can be used to visualize
time data:

Q; — Time.

This is natural but not always the most effective encoding.
Mapping time data into space allows comparisons between
two points in time. For example, if we map time and a func-
tion of time into space (e.g., time and accumulated rainfall),

Q; = Q, [make time be the X-axis]
Gl Q [make accumulated rainfall be the Y-axis|

then we can directly experience rates as visual linear slope,
and we can experience changes in rates as curves. Tufte
(1994) shows a more sophisticated variant in which minia-
ture visualizations are arranged along an axis of time. This
display then becomes a control for controlling an animated
sequence. Another use of time as animation is similar to the
unstructured axes of space. Animation can be used to en-
hance the ability of the user to keep track of changes of view
or visualization. If the user clicks on some structure causing
it to enlarge and other structures to become smaller, anima-
tion can effectively convey the change and the identity of
objects across the change, whereas simply viewing the two



end states is confusing. Another use is to enhance a visual
effect. Rotating a complicated object, for example, will in-
duce 3D effects (and hence allow better reading of some vi-
sual mappings).

VIEW TRANSFORMATIONS

View transformations interactively modify and augment Visu-
al Structures to turn static presentations into visualizations
by establishing graphical parameters to create Views of Vi-
sual Structures. Visualizations exist in space-time. View
transformations exploit time to extract more information
from the visualization than would be possible statically.
There are three common view transformations:

1. Location probes
2. Viewpoint controls
3. Distortions

Location Probes

Location probes are view transformations that use location in
a Visual Structure to reveal additional Data Table informa-
tion. Figure 1.38 shows the FilmFinder after the user probes
a point in the scatterplot. The resulting details-on-demand
pop-up window gives details about the film mapped to the
point. Brushing is a form of probe where the cursor passing
over one location creates visual effects at others’ marks (Mc-
Donald, 1990).

Probes can also augment the Visual Structure. Scientific
visualizations use slicing plane probes to access the interior
of 3D solid objects (DeFanti, Brown, and McCormick,
1989). Streamlines are a probe that renders vector fields vis-
ible. Magic lenses (Fishkin and Stone, 1995) are probes that
give an alternate view of a region in the Visual Structure.
Objects in the region reveal additional properties of the Data
Table.

Viewpoint Controls

Viewpoint controls are view transformations that use affine
transformations to zoom, pan, and clip the viewpoint. These
transformations are common, because they magnify Visual
Structure or change the point of view, which makes the de-
tails more visible. For example, Figure 1.38 shows the
FilmFinder zoomed into a small part of the scatterplot.

The problem with zooming is that the surrounding area
(the context) disappears as the details are zoomed. One
strategy, explored by the Pad (Perlin and Fox, 1993) and
Pad++ systems (see Figure 1.33), is to make the zoom rapid
and easy to invoke (they assign it to mouse buttons) (Beder-
son and Hollan, 1994 ® ). However, this requires the user to
remember information not visible.

Another viewpoint control technique is called overview +
detail (Shneiderman, 1996). Two windows are used together:
an overview of the Visual Structure and a detail window that
provides a magnified focus for one area. The overview pro-
vides a context for the detail view and acts as a control wid-
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FilmFinder showing the details of a probed film. Courtesy of the
University of Maryland. See Ahlberg and Shneiderman (1994a).

get to change the detail view. Figure 1.39 shows a visualiza-
tion of an algorithm using an Information Mural (Jerding
and Stasko, 1995a). The lower window gives an overview of
the entire set of messages. The upper window shows the de-
tail in the area indicated by the rectangle in the lower win-
dow. The message types are associated with a color resulting
in characteristic color patterns in the overview window.
Zoom factors of between 5 and 30 seem to work best, with
larger zoom factors requiring an intermediate view (Shnei-
derman, 1998; Plaisant, Doan, and Shneiderman, 1995).

The overview + detail technique has both strengths and
weaknesses. One strength is that it is simple to implement
and understand. Another strength is that it can provide
rapid access to the details of a visualization that is too large
to fit on a computer display. Its primary weakness is that
comparison may require the movement of the detail win-
dow, including disrupting shifts of attention to the overview
window. Overview analysis may require Visual Structures
that do not fit in the overview window, which is typically
much smaller than the detail window.

Distortion

Distortion is a visual transformation that modifies a Visual
Structure to create focus + context views. Overview and de-
tail are combined into a single Visual Structure. The hyper-
bolic tree (Figure 1.36) distorts a large tree layout (actually it
distorts the space on which the tree is laid out) with a hy-
perbolic transformation that maps a plane to a circle,
shrinking the nodes of the tree far from the root. The per-
spective wall, shown in Figure 1.40, shows when files in a
computer system were modified. Clicking on the file sym-
bols in the bent part of the wall slides the wall so as to bring
them into the central focus area.

Distortion is effective when the user can perceive the larger
undistorted Visual Structure through the distortion. For ex-
ample, the bifocal lens (Spence and Apperley, 1982 @) sup-
ports the perception of linear sequence, although objects
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Information Mural (Jerding and Stasko, 1995a, Figure 2) used overview + detail to view a long sequence of
messages in a program performing a bubble sort.
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Perspective wall. Courtesy of Inxight Software and Xerox Corporation. See Mackinlay, Robertson, and Card

(1991).

outside the focal area have distorted aspect ratios. Distor-
tions can be roughly classified by what the human perceives
as invariant. The perspective wall (Mackinlay, Robertson,
and Card, 1991) is similar to the bifocal lens, but the hu-
man perceives the linear sequence as folded, which means it
is a distortion that leaves even the metric information in-
variant (Mackinlay, 1986b ®). The bifocal lens is an exam-
ple of a 1D distortion that leaves ordering invariant. The

table lens (Rao and Card, 1994 @) is an example of a 2D dis-
tortion that leaves ordering invariant. Three-dimensional
distortions are also possible (Carpendale, Cowperthwaite,
and Fracchia, 1997 @ ). The next most general type of dis-
tortion leaves topological relationships invariant, e.g., the
hyperbolic tree (Lamping and Rao, 1996 ®). Distortion is
not effective when the features or patterns of use to the user
are distorted in a way harmful to the task.
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INTERACTION AND
TRANSFORMATION CONTROLS

The final part of our reference model (Figure 1.23) is hu-
man interaction, completing the loop between visual forms
and control of visualization parameters in the service of
some task. The most obvious form of interaction is direct
manipulation. For example, the nodes in a hyperbolic tree
(Figure 1.36) can be dragged with the mouse to the center
of the display.

Interaction includes techniques for controlling mappings
in Figure 1.23:

Raw Data — Data Table. The FilmFinder (Figure 1.31) is
an example of the interactive control of data mappings. The
sliders filter cases from the complete Data Table of films, se-
lecting those that appear in the Visual Structure scatterplot.
The resulting query is a conjunct of ranges specified using
the user interface widgets shown in Figure 1.31. The result-
ing tight coupling between query and result is more effec-
tive than entering query commands.

Data Table — Visual Structure. Interactive control of the
mapping from Data Table to Visual Structure can be pro-
vided in a separate user interface or integrated with the Visu-
al Structure. Many scientific visualization systems use a sepa-
rate dataflow window for their controls. Data Tables and
Visual Structure are represented in this window as rectangles
that have input and output spots. The user controls the map-
ping by connecting inputs to outputs. In contrast, integrated
techniques allow the user to click on parts of the Visual
Structure to change the mapping. In the FilmFinder, the user
might click on the Y-axis to change Popularity to Rating.

TABLE 1.24

Visual Structure — View. Interactive control of the view
can also be a separate or integrated interface. Probes and
viewpoint manipulations are typically integrated. Distortion
techniques often have a more global impact that may re-
quire an external user interface, but they can be integrated.
For example, the table lens provides small handles on the
focal region for making changes.

CONCLUSION

The reference model of information visualization developed
in this chapter approximates the basic steps for visualizing
information: The first step is to translate Raw Data to a Data
Table, which can then be mapped fairly directly to a Visual
Structure. View transformations are used to increase the
amount of information that can be visualized. Human inter-
action with these Visual Structures and the parameters of
the mappings create an information workspace for visual
sense making.

In real life, visual sense making usually combines these
steps into complex loops. Human interaction with the infor-
mation workspace reveals properties of the information that
lead to new choices. Designing means for carrying out these
mappings leads to a number of techniques. Table 1.24 lists
some of these in summary. The rest of this book collects ex-
amples in detail.

In the papers that follow, we use the reference model to
follow the literature in this newly emerging area. Chapter 2
surveys mappings of abstract data into spatial form. Chapter
3 considers methods for interacting with these mappings.

The components of the reference visualization model shown in Figure 1.23. Specific techniques are also included in the
table. The specific techniques for Data Tables, discussed in the text, are a list of common data types that have well-known
Data Tables. Tasks are operations that a user may want to do with the visualization.

DATA TABLES VISUAL STRUCTURES VIEWS HUMAN INTERACTION TASKS LEVEL
Cases Spatial Substrate Location Probes Data Tables Forage for Data Infosphere
Variables Marks Viewpoint Controls Visual Structures Problem Solving Workspace
Values Graphical properties Distortion Views Search for Schema Visual Knowledge
Metadata Instantiate Schema Tools

Author, Decide, or Act | Visual Objects

Specific Techniques

Spatial (Scientific) | Position: NOQ Brushing
Geographic Marks: PLAV Zooming
Documents Properties: Connection, Overview + Detail
Time Enclosure, Retinal, Focus + Context
Database Time
Hierarchies Axes:
Networks Composition
World Wide Web Alighment

Folding

Recursion

Overloading

Dynamic Queries Overview Delete

Direct Manipulation Zoom Reorder

Magic Lens Filter Cluster
Details-on-Demand Class
Browse Promote
Search Average
Read Fact Abstract
Read Comparison Instantiate
Read Pattern Extract
Manipulate Compose
Create Organize
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Chapter 4 then looks in more detail at methods that dynam-
ically focus on part of the space while maintaining a con-
stant context, much like the visual system. Given the impor-
tant role of text in knowledge crystallization, Chapter 5
focuses on methods for visualizing text. Chapter 6 is about
visualization at other levels: infosphere, workspace, and vi-
sual object. Chapter 7 introduces some theory of informa-
tion visualization. Finally, Chapter 8 discusses applications
of information visualization and their implications.
Information visualization is a body of techniques that
eventually will become part of the mainstream of computing
applications just as computer graphics became part of the
mainstream with the advent of bitmapped displays. At cer-
tain points, the development of technology crosses barriers
of performance and cost that allow new sets of techniques to
become widely used. This, in turn, has effects on the activi-
ties to which these techniques are applied. We believe this is
about to happen with visualization technology and informa-
tion visualization techniques. Information visualization is a

new upward step in the old game of using the resources of
the external world to increase our ability to think. As Nor-
man says,

One method for expanding the power of the unaided mind is to
provide external aids, especially notational systems, ways of rep-
resenting an idea in some external medium so it can be main-
tained externally, free from the limits of working memory. (Nor-
man, 1993, p. 246)

Information visualization can help make us smart. Of
course, leverage works both ways. It can also make us stu-
pid by misadvised mappings and unworkable user inter-
faces just as “chart junk” graphics makes information harder
to comprehend. This set of readings is about efforts to puz-
zle out the difference between these two outcomes by inven-
tion and analysis. Not every idea in these papers is a good
idea. But collectively they are part of the exploration of the
space of possibilities for using visual computing to think.




