

d3.force 7,922 nodes 11,881 edges

Use the Force!

http://mbostock.github.io/d3/talk/20110921/

Force-Directed Layout

Nodes = charged particles with air resistance Edges = springs $F = q_i * q_j / d_{ij^2}$ $F = -b * v_i$ $F = k * (L - d_{ij})$

D3's force layout uses velocity Verlet integration

Assume uniform mass *m* and timestep Δt : $F = ma \rightarrow F = a \rightarrow F = \Delta v / \Delta t \rightarrow F = \Delta v$ Forces simplify to velocity offsets!

Repeatedly calculate forces, update node positions Naïve approach O(N²) Speed up to O(N log N) using quadtree or k-d tree Numerical integration of forces at each time step

Attribute-Driven Layout

Large node-link diagrams get messy! Is there additional structure we can exploit?

Idea: Use data attributes to perform layout e.g., scatter plot based on node values

Dynamic queries and/or brushing can be used to explore connectivity

Summary

Tree Layout

Indented / Node-Link / Enclosure / Layers How to address issues of scale?

Filtering and Focus + Context techniques

Graph Layout

Tree layout over spanning tree Hierarchical "Sugiyama" Layout Optimization (Force-Directed Layout) Attribute-Driven Layout

Final project

Data analysis/explainer or conduct research

- **Data analysis**: Analyze dataset in depth & make a visual explainer
- **Research**: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple interactive visualizations
- **Research**: Implementation of solution and web-based demo if possible
- **Short video (2 min)** demoing and explaining the project

Schedule

- Project proposal: Thu 10/29
- Design Review and Feedback: Tue 11/17 & Thu 11/19
- Final code and video: Sat 11/21 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Topics

Network Analysis

- Centrality / centralization Community structure Pattern identification

- Models

When is degree not sufficient?

Does not capture

Ability to broker between groups

Likelihood that information originating anywhere in the network reaches you

When are C_d , C_b not sufficient?

Do not capture

Likelihood that information originating anywhere in the network reaches you

Centrality in directed networks

Prestige ~ indegree centrality

Betweenness ~ consider directed shortest paths Closeness ~ consider nodes from which target node can be reached Influence range ~ nodes reachable from target node

Straight-forward modifications to equations for non-directed graphs

57

Characterizing nodes

	Low Degree	Low Closeness	Low Betweenness		
High Degree		Node embedded in cluster that is far from the rest of the network	Node's connections are redundant - communication bypasses him/her		
High Closeness	Node links to a small number of important/active other nodes.		Many paths likely to be in network; node is near many people, but so are many others		
High Betweenness	Node's few ties are crucial for network flow	Rare. Node monopolizes the ties from a small number of people to many others.			

Hierarchical clustering

Process:

- Calculate affinity weights W for all pairs of vertices
- Start: N disconnected vertices
- Adding edges (one by one) between pairs of clusters in order of decreasing weight (use closest distance to compare clusters)
- Result: nested components

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

4	no	de	su	bg	r a p	ohs						
NR NR	and a set		si ali	19412 19412	SHE SHE	See						14672 14685
											×	
				1952 1957		101 M						
										×		
	NSC10	19612			N6652			1004 1004				
		1504									10170	
		₩ A			55574 15574							

Defining small world phenomenon

Pattern:

- high clustering
- low mean shortest path

Examples

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph
- food webs

