Network Layout

Maneesh Agrawala

CS 448B: Visualization
Fall 2020

Last Time: Animation

Implementing Animation

Animation Approaches

Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Frame-based Animation

alnialm

Frame-based Animation

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

Bjmia]m

Frame-based Animation

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

TENIS

Frame-based Animation

clear(Q) clear(Q) clear(Q)

HilE

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

Soini

Animation Approaches

Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Animation Approaches

Frame-based Animation
Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Transition-based Animation (Hudson & Stasko ‘93)
Specify property value, duration & easing (tweening)
Typically computed via interpolation

step(fraction) { xnow = xstart + fraction * (xend - Xstart); }

Timing & redraw managed by Ul toolkit

Transition-based Animation

from: (10,10) to: (25,25) duration: 3sec

dx=25-10
x=10+Ct/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx

R

Transition-based Animation

from: (10,10) to: (25,25) duration: 3sec
Toolkit handles frame-by-frame updates

dx=25-10
x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx

E

D3 Transitions

Any d3 selection can be used to drive animation.

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Static transition: update position and color of bars.

bars
attr(”"x", (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style("fill”, (d) => colorScale(d.baz));

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.

attr("x"”, (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style(“fill”, (d) => colorScale(d.baz));

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.

attr("x", (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style("fill”, (d) => colorScale(d.baz));

// Animation is implicitly queued to run!

D3 Transitions, Continued

bars.
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
attr("x"”, (d) => xScale(d.foo))

D3 Transitions, Continued

bars.
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
attr(”"x", (d) => xScale(d.foo))

bars. // animate elements leaving display
.style("opacity”, 0) //fade out to fully transparent
.remove(); // remove from DOM upon completion

Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)
to end (100%), dynamically adjust the interpolation fraction
using an easing function.

10

Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)

to end (100%), dynamically adjust the interpolation fraction
using an easing function.

ease(x) = x
(linear, no warp)

elapsed time / duration

Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)

to end (100%), dynamically adjust the interpolation fraction
using an easing function.

ease(x) = x ease(x) = s-curve(x)
(linear, no warp) (slow-in, slow-out)

0

elapsed time / duration elapsed time / duration

11

easelnSine easeOutSine easelnOutSine easelnQuad easeOutQuad easelnOutQuad

A A Ay e

easelnCubic easeOutCubic easelnOutCubic easelnQuart easeOutQuart easelnOutQuart
S S S
easelnQuint easeOutQuint easelnOutQuint easelnExpo easeOutExpo easelnOutExpo
easelnCirc easeOutCirc easelnOutCirc easelnBack easeOutBack easelnOutBack
easelnElastic easeOutElastic easelnOutElastic easelnBounce easeOutBounce easelnOutBounce
\—
http://easings.net/

23

Summary

Animation is a salient visual phenomenon
Attention, object constancy, causality, timing

Design with care: congruence & apprehension

For processes, static images may be preferable
For transitions, animation has some benefits, but consider
task and timing

12

http://easings.net/

Announcements

Final project

Data analysis/explainer or conduct research
Data analysis: Analyze dataset in depth & make a visual explainer
Research: Pose problem, Implement creative solution

Deliverables
Data analysis/explainer: Article with multiple interactive
visualizations
Research: Implementation of solution and web-based demo if possible

Short video (2 min) demoing and explaining the project

Schedule
Project proposal: Thu 10/29
Design Review and Feedback: Tue 11/17 & Thu 11/19
Final code and video: Sat 11/21 11:59pm

Grading
Groups of up to 3 people, graded individually
Clearly report responsibilities of each member

13

e
=
o
o
O
= |
=
-
o
2
v
Z

14

Graphs and Trees

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges

Nodes as parents and children

Spatial Layout

Primary concern - layout of nodes and edges

Often (but not always) goal is to depict structure
Connectivity, path-following
Network distance
Clustering
Ordering (e.g., hierarchy level)

15

Topics

Tree Layout
Node-Link Graph Layout
Sugiyama-Style Layout
Force-Directed Layout
Alternatives to Node-Link Graph Layout

Matrix Diagrams
Attribute-Drive Layout

Tree Layout

16

Tree Visualization

Indentation

Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams]
Represent hierarchy by enclosure
Layering

Layering and alignment ﬁ

Tree layout is fast: O(n) or O(n log n),
enabling real-time layout for interaction

Indentation

7] Deskiop ltems along vertically spaced rows
BRG] documets| J yoP
(1 admissions04 Indentation shows parent/child

] cara's data . .
: 1 dio Synchronized Files = I ations h I p =

i 1 in progress R— f
O o Often used in interfaces

Ly eBooks Breadth/depth contend for space
{1 My Music

(B my Pictures Often requires scrolling
1 My webs

: 1 videos

{1 web cache

@ computer

network

2 Recycle Bin

& iexplore

[+ f Hummingbird Meighborhood
{1 Friendster

1 Globe

i CI imagery

N

1 misc

] mtamazon = I

Single-Focus (Accordion) List

% wi20-lectures

El v a Q

Favorites ©s206-1a18 assigments = Assignment 1 % LecO1-purpose.pdf

>
22 Dropbox z:;g:c::i CS 4488 2020 Winter B Assignment 2 B T Lecot-purpose.pptx ~ |
S 3 d3slides = Assignment 3 » % LecO2-data.pdf
P cs247-fa15 i fec.csv Attendance.gsheet W LecO2-data.pptx
42 Google Drive. ©s247-sp17 fec.txt CA Notes Lec03-visdesigns.pdf
A, Applications €s247-spring-2018 FEC#CSV (FEC.CSV).TDE D3 o » [LecO3-visdesigns.pptx
B Recents cs294-fa13 finalprojects. Fall 2017 O...ades.gsheet Lec04-eda.pdf
) cs294-fal4 images Fall 2018 O...ades.gsheet Lec04-eda.ppt
(3 Documents ©5294-5p10 movies.csv [Final Poster...ck List.gd -
. gdoc B LecO4-eda.pptx
© Downloads s294-5p11 opt = Final Projects Lec05-space2D.pdf
@ Creative Clou... cs448b-fa16 restrictedpdfs Gradesheet.gsheet I LecO5-space2D.ppitx
. cs448b-fa17 i StanfordCSC...14-2019.csv Old Grades...plate.gsheet % LecO6-introD3.pdf
fcloud cs448b-fa18 wikistuff Reading Re...ades.gsheet = Lec07-d3Exercises.pdf
& iCloud Drive = Reading Re...ses - Forms B LecO7-designEx.pptx
Lo = wi20-lectures LecO8-interaction.pdf
'65443\/'5919 M LecO8-interaction.potx
o0 M LecO8-interaction.pptx
(& xLp 20191004 grprelim Lec09-perception.pdf
heiprelim I Lec09-perception.pptx
myGuestLectures % Lec10-visExplainers.pdf
sig08-compjournalism 1 o1 OvieEvnlainare nty

& Macintosh HD > 1 Users > maneesh > I Google Drive > I CS 4485 2020 Winter > I8 wi20-lectures > B LecO1-purpose.pptx

B

‘The Purpose of Visualization
-

LecO1-purpose.pptx
35.7 MB

7000000000000000000

1 of 28 selected, 2.64 TB available

Separate breadth & depth in 2D
Focus on single path at a time

Node-Link Diagrams

Nodes distributed in space, connected by lines

Use 2D space to break apart breadth and depth

Space used to communicate hierarchical orientation
Typically towards authority or generality

Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension

Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension

19

Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension

Problem: Exponential growth of breadth

Reingold & Tilford’ s Tidier Layout

Goal: maximize density and
symmetry.

Originally for binary trees,
extended by Walker to cover
general case.

This extension was corrected by
Buchheim et al. to achieve a
linear time algorithm

20

Reingold-Tilford Layout

Design concerns
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don 't waste space)

Reingold-Tilford Algorithm

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts

21

Reingold-Tilf

Reingold-Tilf

ord Algorithm

ord Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees
Shift right as close as possible to left
Computed efficiently by maintaining subtree contours
“Shifts” in position saved for each node as visited
Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts

22

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final posi
Sum of initial layout and aggregated shifts

33

Reingold-Tilf

Reingold-Tilf

ord Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

34

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass

Set Y-coord by depth, arbitrary starting X-coord

Merge left and right subtrees
Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts

Node-link diagram in polar coords
Radius encodes depth root at center
Angular sectors assigned to subtrees

(recursive approach)
Reingold-Tilford approach can also be

applied here

iy
s

Ho,
i

Fit,

36

Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

Visualizing Large Hierarchies

Folders =

® O dev
® () Documents and Settir
* () DRIVERS
®) 1986

() IBMSHARE
® D BMTOOLS

2 RECYCLER (YY)
(2 RRbackups

® (2 suPPORT

() SWTooLs
) System Volume Infore
) temp

® ([vALUEADD

® 0 var

an
= (2 WINDOWS
(2 $hF_mig§
® (2 $MsI31Uninstall_|
% () $MtUninstalkess:

[$tuninstalkBI0(v: Clv

€l [2] QAL —— =D
Indented Layout

83

37

MC Escher, Circle Li

r—

Contac

o=
ndustrnow poeu
o~

o DocuP

Environment, Healt a|

Xerox - The Document Company|

[Working at Xerox

frer} Businase 08

Investor Info! Drive
o] Xerox N Buy Oi..

Layout in hyperbolic space, then
project on to Euclidean plane

Why? Like tree breadth, the
hyperbolic rlane expands
exponentially

Also computable in 3D, projected
into a sphere

38

Degree-of-Interest Trees [avioa]

dylagll
i Jal

ohe_Dnnk
APPOR_INT

T

IDT 0 _Dmi 0T
TYI_mIY_paD

= DIR_T_y

iy

e
=man

TXI9n_n e WEY_T_nm_ oo

mom

=TT

= nbyan_mown

n_mma
=nom
= nann

<. items...>
> gl
sdasly

=gl

= Lingal

o pls_g_sbasidl
s bl
=S
B Sinjé_g_dmaler
<.7 items...>

~ma
=

&= man
=mym
=n_mTn
=y

<.7 items...>

= Afrikaans

[B=== Frangais
= Frysk

= Gaeilge
= Galego

== Adult
== Arts

[B= Business
[B== Computers
[P Games
[B== Health
== Home

= Greek [B== Kids_and_Teens

&= Hindi
&= Hrvatskd
B== Indonesia
= Interlingua
[Be== italiano
== Japanese
= Kannada
= Kiswahili

== Korean

C <.31items..>)

== News

[B== Recreation

== Reference
[P Regional
[l science
[B== Shopping
[B== Society
== Sports
—World

Space-constrained, multi-focal tree layout

Degree-of-Interest Trees

Generic ==

Specific People

<

|z,o |2.1

Contemporary

Future The Millenium
Cultural Eras ==
<.5items..>

Recurring

Historical

Arts =
<.5 items...>
Economic +
<.2items..>
Branches =
Schools =
Behavioral <
<.4items..>
Technology —— Engineering <

Humanities
Ideology
Philosophy

Soience

Measurement <

Cull “un-interesting” nodes on a per block basis until all blocks on a level fit

within bounds

Constellations <]
Celestial Galaxies +
<.2items..>
| =

Holidays =
Months <
Seasons =

|4n

4.1

Commute

Meals

Meetings
Sleep

Times of Day

Breakfast
Brunch
Dinner
Lunch

Afternoon
Dawn
Daybreak

Twilight

Temestrial Political =
Sacred <

Animal =]
Fungi =

<..5 items..>

Cultural ==t
Games <1
Mythological
Software <1
Eleotronic =
Tangible < Mechanical

Organic <

Center child blocks under parents

Days of the Week

Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

39

https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree

Enclosure Diagrams

Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth

Circle Packing Layout

Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:

40

Circle Packing Layout

Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:
Inefficient use of space
Parent size misleading

Treemaps

Hierarchy visualization that emphasizes values of nodes via
area encoding

Partition 2D space such that leaf nodes have sizes
proportional to data values

First layout algorithms proposed by
, with focus on showing file sizes on a hard drive

41

http://www.cs.umd.edu/hcil/treemap-history/

|

e]

Al

B0 mE-—=meT

145

1] £ {*=P=] 2]

T T
=

“o oo

E

Slice & Dice layout: Alternate horizontal / vertical partitions

TECHNOLOGY
'SOFTWARE - INFRASTRUCTURE

MSFT
+1.25%

CONSUMER ELECTRONICS

AV
+1.49%

FINANCIAL
‘CREDITSERVICES

MA
\"/

pypL | AXP
+1.15% CcoF
=
FRE e
WFC
JPM Bac
-152% | -187%
C

SEMICONDUCTORS.

INTC
2.27%

NVDA
ORCL +1.33%
a0

AVGO

0s2%

Qcom | MU Api

Lo || 084% 003

S swrs
AMD
“4a0%.

INFORMATION TECHN | SOFTWARE “AP.

ACN

CRM

OB | w291%

INTU N
FIS st nr Soms oo

034%

FISV

COMMUNICATIO

Csco

256%
Ml e
INSURANCE - DIVERSIFIED

BRK-B
-0.41%

oW

s
" cons %
i s
SEMICONDU ELECTR
APH
X 26t
KLAC
compurer ™!
woc | FTV
sTX e

FINANCIAL DATA

SPGI | CMI

ik | 05

Mscl
ICE wco #145%
o055 ‘048

REGIONAL |ASSETMANA INSURANCE

PNC
142%
Kev| RF
TR
0% e
CAPITALMARKETS
SCH)

BLK BK CB PGR
odgx 221 -075% 072%

e
ST A

NTRs| ||

INSURANCE [INSURANC

N MET pmy

e AN azex B8

AFL

CCOMMUNICATION SERVICES

INTERNET CONTENT & INFORMATI

GOOGL
+0.17%

FB
+1.59%

HEALTHCARE
DRUG MANUFACTURE

+0.62%

HEALTHCARE PLANS.

MEDICALDEVICES

MDT

-1.14%

SYK |z

CONSUMER CYCLICAL
ENTERTAINMENT INTERNET RETAIL

DIS

+0.06% A M Z N
NFLX +1.47%

-1.03%

TELECOM SERVICES
HOMEIMPROVEMENT FOOTWEAR SPECIALT | APPARE

NKE &3
vz I HD 0 %o o
5 4071% %

RESOR AUTO
RESTALRANTS ws [

TMUS SBUX LoDGIN

MCD % packac AR
oa >
o cw B P ApPAREL Bl o
o 9 v

INDUSTRIALS
SPECIALTYINDUSTRIALMAC |RAILROADS | INTEGRAT
GE T % ups
HON NP s

AGN | % [Rop| cMil Rok

K

Fox

X

™ on

e

(1) e
B o [
7

FARMEHEAVY. | STAFFING

DIAGNOSTICS & RESEARCH
ILMN iV gaal] 5
“086% 197 |AEROSPACE & DEFENSE
TMO | DHR

sioz | sex | A WO[H | MT

CAT DE ADP
% | 13 ek

SPECIALT WASTE AL
BA Noc oy i

] G2 e ENGIN
MEDICALINSTRUMEN DRUG MAN consuLT Jcr 4
BDX | BAX 15 R X D) VRSK INDUS
+101% $2.02% i -4.78% EFX

MEDICALD
ispe | P e om G eoraren owacas oLaoss
Ll MEDICALC COP eo5 psx
oos | HEA XOM Cvx o R
VRTX| REGN %010 pHARM 0.92% 111% S —
- 0% v WBA

BIOTECHNOLOGY

Squarifed layout: Try to produce square (1:1) aspect ratios

CCONSUMER DEFENSIVI
DISCOUNTSTORES

3
HOUSEHOLD & PER

WMT PG
+0.61% +1.22%

KMB
EL ‘omex

an
DG i)
+102% Al |

OMY £20 | TJX BEVERAGES-N PACKAGED [TOBACCO

KO 5 e PM
+061% w7
= s MO

PEP
+1.03% 7

HSY [TSN] aom
REAL ESTATE
REIT-SPECIAL REIT-IND REIT-OFFI

AMT | ccl PLD w32 a1
wosx | soss 05
PG we
REIT-RES] 2%
EQIX SBAC [EQR

4055% =

VIR

UTILITIES
UTILITIES -REGULATEDEL UTILITIES -D

AEP SRE
e OO um | D
woams [XEL| gp EX

BASIC MATERIALS
SPECIALTY CHEMIC CHEMIC

ECL shw APD NEM
UN 0% 0]

y oow o

oo op o

755 | s IFF

it @

2% | aam

42

Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

— I
events
animate

O
analytirsh '. I — controls “
cluster l‘ ‘ A distortion encoder
: oy

—T vis

operator

layout

- methods = palette

https://vega.qgithub.io/vega/examples/treema

Why Squares

Posited Benefits of 1:1 Aspect Ratios
1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?

43

https://vega.github.io/vega/examples/treemap/

Error vs. Aspect Ratio [Kong 10]

Aspect Ratios

Squares ——» }_6_{

T T
25 3.0

Log Error

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Treemaps vs. Bar Charts [Kong 10]

e b U Ll

R TR m L s it

nFENPEMIME
| =nEl AR
TH B Hi [L| ||”|’ HH ’H‘ “lhlllMILHl‘.‘.Hh“h;“"‘ld

Height more perceptually effective than area

What if element count is high?
What about comparing groups of elements such as leaf

values to internal node values?

44

Treemaps vs. Bar Charts [Kong 10]

e Ll
H JT ; {*_ T i1 s e
FE PO
mmmnmanamens s RSN
==msmamuuin e RN RTTI

At low densities (< 4k elements), bar charts more accurate

t

han treemaps for leaf-node comparisons.

At higher density, treemaps led to faster judgments.

Treemaps better for group-level comparisons.

100

Cushion Treemaps [van Wijk 99]

101

Use shading to emphasize hierarchical structure

45

Cascaded Treemaps |[Li 08]

Use 2.5D effect emphasize hierarchical structure

102

103

Voronoi Treemaps [Balzer 05]

Treemaps with arbitrary
polygonal shape and
boundary

Uses iterative, weighted
Voronoi tessellations to

achieve cells with value-
proportional areas

46

Layered Diagrams

105

106

Signify tree structure using
Layering

Adjacency

Alignment

Involves recursive sub-division of space

Can apply the same set of approaches as in node-link
layout

Icicle and Sunburst Trees

Mgz - -
il -
[[T

Higher-level nodes get a larger layer area, whether
that is horizontal or angular extent

Child levels are layered, constrained to parent’ s extent

47

Layered Tree Drawing

Coffee \ Espresso ‘

Amaretto ‘ Columbian |Decaf Irish Cr..| Caffe Latte ‘ Caffe Mocha |Decaf Espresso Regular Espre..
Colorado]
Tlinis

Iowa
Central
Missouri
Ohio

Wisconsin

Connecticut
Florida
Massachusetts
New Hamps..
New York

Louisiana
New Mexico
OKahoma
Texas
California
Nevada
Oregon
Utah
‘Washington

T T T T T I I T T T I] T T
-20K 0K 20K |-20K OK 20K |-20K OK 20K |-20K OK 20K |-20K OK 20K |-20K OK 20K |-20K OK 20K

SUM(Profit) | SUM(Profit) | SUM(Profit) | SUM(Profit) | SUM(Profit)y | SUM(Profit) | SUM(Profit)

107

Node-Link Graph Layout

109

Spanning Tree Layout

Many graphs are tree-like or have useful
spanning trees

Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS

Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates

Heuristics may further improve layout

111

Lamberteschi
[o]
Ginori
o]
Guadagni
e # Albizzi
Bischeri Tornabuoni © .
(@] Pazzi
Salviati o]
Medici O
O
Barbadori = Acciaiuoli
Ridolfi
Castellani o
O
P"B‘E' Strgzzi

Spanning tree layout may result in arbitrary parent node

112

49

Sugiyama-style graph layout

113

114

Evolution of the UNIX

operating system

Hierarchical layering
based on descent

‘4.1BSD :
[23ESD’. : 42BSD : <81 Baition

S0 TN TN

- Uil . < 29BSD + . Uk - © 43BSD - SBEdiem |

Reverse some edges to remove cycles

Assign nodes to hierarchy layers > Longest path layering
Create dummy nodes to “fill in” missing layers

Arrange nodes within layer, minimize edge crossings
Route edges - layout splines if needed

50

115

117

Produces hierarchical layout

Sugiyama-style layout emphasizes hierarchy

However, cycles in the graph may mislead.
Long edges can impede perception of proximity.

Hierarchical Edge Bundles

51

v
c
o

=

S
O

(-
N
v
c
O
v

2

Trees with Ad

118

119

52

120

Bundle Edges along Hierarchy

121

Use radial tree layout for inner circle
Mirror to outside
Replace inner tree with hierarchical edge bundles

Py =LCA(Ry,Fs)
(P4

53

Increasing Edge Tension

122

Configuring Edge Tension

123

54

Flare Class Hierarchy
& Dependency Graph

entrati,

InossC,

o
ohwoony

B
Lin

ot
oisionuos

Dependencies
- depends on
— Imported by

124

125

Force-Directed Layout

95

Interactive Example: Configurable Force Layout

126

vt o B N vw-n_ B
e A

e T Ty ¥
o 5 e e e - Lo e

Saan oo Rl e oun
= ! . W - v

Y o gy
e i T
» v nm- ﬂmm.ﬂm sascha ““‘" A ol
R By e
Eon g Fo v 5
s B B Brge - mew g -

_Hw oo
-t

e

gy L g & .
e P SR .A..,.PM A“lnwal«n.‘w."lm. L I

b BN P
[= ~ag. Bag e, B oo

i

o ke

B

PRy, S e bl : R
P, P e el Qe L | 4§ el
g e anares 00 M

‘ s g e R
o o B I 8] HM""‘” & Bowioe J‘ B9 wman

- wn gm
e e B i B g L -
. . » LI e a- "
p> L M-t
EOT - et St - B~
i Ee B Qe = Nl

WA einies .
Too o B s il 2. L0

2 el .-
. [AR B e

B e

g e
Kd--
N s e B B

e B

commurity >> Enable search>>

Zephoria

User ID

21721

Friends [] 266

age

22

Gender [] Female
Status [] Single

Location
Hometown
Occupation

Interests

Music

Books

TV Shows
Movies

Member Since
Last Login
Last Updated
About

‘Want to Meet

San Francisco, CA
Lancaster, PA

researcher. social networks,
identity, context

apophenia, obsenving people,
culture, questioning power,
reading, buddhism, inseity,
computer-mediated
communication, social
networks, technology,
anthropology, stomping
psytrancefgoaltrance (Infected
Mushroorn, Son Kite.
Iboga/Digital Structures], Ani
Difranco, downternpo,
Thievery Corporation, Beth
Orton, Morcheeba, Ween,
White Stripes

Authors: Enving Goffman,
Stanley Milgram, Jeanette
Winterson, Eric Schiosser,
Leslie Feinberg, Dorothy
Allison, ltalo Calvino,
Hermann Hesse

27

Koyaanisgatsi, Amelie,
Waking Life, Tank Girl, The
Matrix, Clockwork Orange,
American Beauty, Fight Club,
Boys Dont Cry

2

2003-10-21
2003-10-21
[Some know me as danah..]

I a geek, an activist and an
academic, fascinated by
people and

society. | see life as a very
large playground and enjoy
exploring its

intricacies. | revel in life's
chaos, while simultaneously
providing my own

insane element.

My musings:

http:fhwwow Zephoria.orgthoug
htsf

Someone who makes life's
complexities seem simply

127

56

Use the Force!

http://mbostock.github.io/d3/talk/20110921/

128

d3.force
7,922 nodes
11,881 edges

s

[Kai Chang]

129

S7

http://mbostock.github.io/d3/talk/20110921/

Force-Directed Layout

Nodes = charged particles F = q* q;/ dij?
with air resistance F=-b*vy
Edges = springs F =k * (L - dij)

D3’s force layout uses velocity Verlet integration
Assume uniform mass m and timestep At:
F=ma—-F=a—->F=Av/At—> F=Av
Forces simplify to velocity offsets!

Repeatedly calculate forces, update node positions
Naive approach O(N2)
Speed up to O(N log N) using quadtree or k-d tree

Numerical integration of forces at each time step

130
o ©
°
e®e
°
® o
® 9
.: o.. ‘ L4
® °® . °
° ° °
o.. ° 0.0
® o o, o © o ®
° °
o ® ° ° ®e
° ° o °
Oo... °
e o o ¢
°
e o o °
°
°
00 ,®
131

58

[]
e®%e
[]
® o
® 9
[]
° : o. ‘ L4
[] []
[] .. ° ® e []
[] []
°q ° ° °
° o © ° o © e °
° °
o ® ° ° ®e
o ° ° °
[] .. oo Y
[
® e o
° []
e o °
[]
[]
00 ,g®
132
o @
[]
e®e
L]
® o
® e
[]
° []
® e o. L
° o ® °
[}] []
° []
o, Y . °
® ° .. o ©® U
) °
o ® ° ° ® e
® e’ ° R Naive calculation of
o0 X forces at a point uses
° =00 sum of forces from
® o ¥\ all other n-1 points.
e []
o °
[]
[]
00 ,®

133

°°. For fast approximate
e ®oe calculation, we build
5 a spatial index (here,
a quadtree) and use
it to compare with
® o distant groups of
®e points instead.
® o
L] e
® e ° L4
b o » °
° o ° ° .
[2P ° L] L]
(] o © ° o ©® [
° °
o ® ° ° ® e
° ° S °
L4 .. oo []
[}
® oo ¢
.
o o °
L)
00,
134
. The Barnes-Hut 6
parameter controls
when to compare
with an aggregate
center of charge.
. .) ° Wquadnode / dij <067?
* e
o ® Lie
{ o ® o
°
l®
(] (] A
o, .
Y 6=0.5
® AN
o
135

60

6=0.9
(default setting)

136

137

61

138

140

Alternative Layouts

62

Brujon @
Mme.Hucheloup 8—

=

Brevat @ ¢
Cheniidieu 9%
Cochepaille =
Eponine
Anzelma o
Childt »
Chili2 »

Pontmercy
Boulatruelle »
Woman2 "
Motherinnocent
Toussaint #———=""""

Bamatabols S

Mme.Magloire &

Countessdelo »
Geborand »
Tholomyes

Fauchelevent T8

Mile.Baptisting @
Montparnasse @e—="

Champmathieu o

Linear node layout, circular arcs show connections.
Layout quality sensitive to node ordering!

141

——+
>

——1+—+—F
e — ——
—— e —

[
IEES
s

s
o
o

\
bl
.l
ol
<
s
L

T
:
L

For example, the picture above was built from the first line of a
very simple piece: Mary Had a Little Lamb. Each arch connects
two identical passages. To clarify the connection between the

visualization and the song, in this diagram the score is displayed The S ha pe of Song
beneath the arches. 7
[Wattenberg '01]

This diagram visualizes the refrain from the folk song Clementine.
As you would expect, the refrain consists of multiple repetitions of
the same passage--and that is exactly what the diagram shows.
The score isn't shown in this diagram since the notes would be too
small to read.

142

63

64

u o
2P0
I OUION
Apney
axennosd
dnojeuony ew
petiirey . EE mEEE |
v] EERE EEEEE
(o) - .
u m o=
el o wiienel .
omm enieinog]
s Aoseuuog ewpy n
]
[] [
=) =
n Ic [| [] I
]
| | | |
omm v g
—d 0 g -
snosanber H]
] [
1 d u] L |
e] (] (] [
c] m_
H m
H] EEEEEEEEEE]]]
0) - 8
N U
(€] [] 1 EEEEE EE u
7)
g uosjodeN
euoBep e u
d EEEEEE
o
alem -
wensjeyone
=yEqeye gssuRsReYD eaexsuz
a £253588 FEI §355858s
5589882 SASEEFERIE 2232566
27cggeq g 32829059 881
alem § 52959 332 2 32 oz 2
g 23 8¢ 5 5 =5 g s
L] 85 °% s "3 £ 2
=

E

L

143

146

Attribute-Driven Layout

Large node-link diagrams get messy!
Is there additional structure we can exploit?

Idea: Use data attributes to perform layout
e.g., scatter plot based on node values

Dynamic queries and/or brushing can be
used to explore connectivity

155

Attribute-Driven Layout

The “Skitter” Layout
Internet Connectivity
Radial Scatterplot

Angle = Longitude
Geography

Radius = Degree
of connections
(a statistic of the nodes)

156

65

£ Network Yisualization by Semantic Substrates {(N¥SS) . .
— Semantic Substrates [Shneiderman 06]
Supreme 1982 1987 1992 1998 REGIONS

36 @ [| Supreme

13 [] [] Circuit

CITES
0 M [] Supreme to Supreme
0 M [] Supreme to Circuit

® 18 N Circuit to Supreme
2l Circuit to Circuit

RANGES
[] Supreme

i3 K]

1978 -- 2002

Circuit

LI

1991 -- 1993

Z, -—
TRy LN

4 o ;f"\\ b :’\)i.",
. 6 Hcﬁ;} 6

Circuit 1982 1987 1992 1998 Copyright (C) 2006 Univ. of Maryland

157

Summar
—— OB
Tree Layout

Indented / Node-Link / Enclosure / Layers
How to address issues of scale?

Filtering and Focus + Context techniques

Graph Layout

Tree layout over spanning tree

Hierarchical “Sugiyama” Layout
Optimization (Force-Directed Layout)
Attribute-Driven Layout

164

66

