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Implementing Animation

Animation Approaches

Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function
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Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Animation Approaches

Frame-based Animation
Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Transition-based Animation (Hudson & Stasko ‘93)
Specify property value, duration & easing (tweening)
Typically computed via interpolation

step(fraction) { xnow = xstart + fraction * (xend - Xstart); }

Timing & redraw managed by Ul toolkit




Transition-based Animation

from: (10,10) to: (25,25) duration: 3sec

dx=25-10
x=10+Ct/3)*dx  x=10+(t/3)*dx  x=10+(t/3)*dx  x=10+(t/3)*dx

R

Transition-based Animation

from: (10,10) to: (25,25) duration: 3sec
Toolkit handles frame-by-frame updates

dx=25-10
x=10+(t/3)*dx  x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx
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D3 Transitions

Any d3 selection can be used to drive animation.

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);




D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Static transition: update position and color of bars.

bars
attr(”"x", (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style("fill”, (d) => colorScale(d.baz));

D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.

attr("x"”, (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style(“fill”, (d) => colorScale(d.baz));




D3 Transitions

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.

var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.

attr("x", (d) => xScale(d.foo))
attr("y”, (d) => yScale(d.bar))
style("fill”, (d) => colorScale(d.baz));

// Animation is implicitly queued to run!

D3 Transitions, Continued

bars.
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
attr("x"”, (d) => xScale(d.foo))




D3 Transitions, Continued

bars.
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
attr(”"x", (d) => xScale(d.foo))

bars. // animate elements leaving display
.style("opacity”, 0)  //fade out to fully transparent
.remove(); // remove from DOM upon completion

Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)
to end (100%), dynamically adjust the interpolation fraction
using an easing function.
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Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)

to end (100%), dynamically adjust the interpolation fraction
using an easing function.

ease(x) = x
(linear, no warp)

elapsed time / duration

Easing Functions

Goals: stylize animation, improve perception.

Basic idea is to warp time: as duration goes from start (0%)

to end (100%), dynamically adjust the interpolation fraction
using an easing function.

ease(x) = x ease(x) = s-curve(x)
(linear, no warp) (slow-in, slow-out)

0

elapsed time / duration elapsed time / duration
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Summary

Animation is a salient visual phenomenon
Attention, object constancy, causality, timing

Design with care: congruence & apprehension

For processes, static images may be preferable
For transitions, animation has some benefits, but consider
task and timing
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http://easings.net/

Announcements

Final project

Data analysis/explainer or conduct research
Data analysis: Analyze dataset in depth & make a visual explainer
Research: Pose problem, Implement creative solution

Deliverables
Data analysis/explainer: Article with multiple interactive
visualizations
Research: Implementation of solution and web-based demo if possible

Short video (2 min) demoing and explaining the project

Schedule
Project proposal: Thu 10/29
Design Review and Feedback: Tue 11/17 & Thu 11/19
Final code and video: Sat 11/21 11:59pm

Grading
Groups of up to 3 people, graded individually
Clearly report responsibilities of each member

13
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Graphs and Trees

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges

Nodes as parents and children

Spatial Layout

Primary concern - layout of nodes and edges

Often (but not always) goal is to depict structure
Connectivity, path-following
Network distance
Clustering
Ordering (e.g., hierarchy level)
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Topics

Tree Layout
Node-Link Graph Layout
Sugiyama-Style Layout
Force-Directed Layout
Alternatives to Node-Link Graph Layout

Matrix Diagrams
Attribute-Drive Layout

Tree Layout
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Tree Visualization

Indentation

Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams ]
Represent hierarchy by enclosure
Layering

Layering and alignment ﬁ

Tree layout is fast: O(n) or O(n log n),
enabling real-time layout for interaction

Indentation
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Separate breadth & depth in 2D
Focus on single path at a time

Node-Link Diagrams

Nodes distributed in space, connected by lines

Use 2D space to break apart breadth and depth

Space used to communicate hierarchical orientation
Typically towards authority or generality




Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension

Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension
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Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count
Breadth of tree along one dimension
Depth along the other dimension

Problem: Exponential growth of breadth

Reingold & Tilford’ s Tidier Layout

Goal: maximize density and
symmetry.

Originally for binary trees,
extended by Walker to cover
general case.

This extension was corrected by
Buchheim et al. to achieve a
linear time algorithm
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Reingold-Tilford Layout

Design concerns
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don 't waste space)

Reingold-Tilford Algorithm

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts
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Reingold-Tilf

Reingold-Tilf

ord Algorithm

ord Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees
Shift right as close as possible to left
Computed efficiently by maintaining subtree contours
“Shifts” in position saved for each node as visited
Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts
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Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm o

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts




Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final posi
Sum of initial layout and aggregated shifts

33



Reingold-Tilf

Reingold-Tilf

ord Algorithm o
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Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts

Linear algorithm - starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left

Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited

Parent nodes are centered above their children
Top-down (preorder) pass for assignment of final posi

Sum of initial layout and aggregated shifts
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Linear algorithm - starts with bottom-up (postorder) pass

Set Y-coord by depth, arbitrary starting X-coord

Merge left and right subtrees
Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
Sum of initial layout and aggregated shifts

Node-link diagram in polar coords
Radius encodes depth root at center
Angular sectors assigned to subtrees

(recursive approach)
Reingold-Tilford approach can also be

applied here
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s
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Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

Visualizing Large Hierarchies
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Layout in hyperbolic space, then
project on to Euclidean plane

Why? Like tree breadth, the
hyperbolic rlane expands
exponentially

Also computable in 3D, projected
into a sphere

38
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https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree
https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree

Enclosure Diagrams

Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth

Circle Packing Layout

Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:
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Circle Packing Layout

Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:
Inefficient use of space
Parent size misleading

Treemaps

Hierarchy visualization that emphasizes values of nodes via
area encoding

Partition 2D space such that leaf nodes have sizes
proportional to data values

First layout algorithms proposed by
, with focus on showing file sizes on a hard drive
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http://www.cs.umd.edu/hcil/treemap-history/
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Squarifed layout: Try to produce square (1:1) aspect ratios
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Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

— I
events
animate

O
analytirsh '. I — controls “
cluster l‘ ‘ A distortion  encoder
: oy

—T vis

operator

layout

- methods = palette

https://vega.qgithub.io/vega/examples/treema

Why Squares

Posited Benefits of 1:1 Aspect Ratios
1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?
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https://vega.github.io/vega/examples/treemap/

Error vs. Aspect Ratio [Kong 10]

Aspect Ratios

Squares ——» }_6_{

T T
25 3.0

Log Error

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Treemaps vs. Bar Charts [Kong 10]

e b U Ll

R TR m L s it

nFENPEMIME
| =nEl AR
TH B Hi [ L| ||”|’ HH ’H‘ “lhlllMILHl‘.‘.Hh“h;“"‘ld

Height more perceptually effective than area

What if element count is high?
What about comparing groups of elements such as leaf

values to internal node values?
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Treemaps vs. Bar Charts [Kong 10]

e Ll
H JT ; {*_ T i1 s e
FE PO
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At low densities (< 4k elements), bar charts more accurate

t

han treemaps for leaf-node comparisons.

At higher density, treemaps led to faster judgments.

Treemaps better for group-level comparisons.
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Cushion Treemaps [van Wijk 99]

101

Use shading to emphasize hierarchical structure
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Cascaded Treemaps |[Li 08]

Use 2.5D effect emphasize hierarchical structure
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Voronoi Treemaps [Balzer 05]

Treemaps with arbitrary
polygonal shape and
boundary

Uses iterative, weighted
Voronoi tessellations to

achieve cells with value-
proportional areas
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Layered Diagrams

105

106

Signify tree structure using
Layering

Adjacency

Alignment

Involves recursive sub-division of space

Can apply the same set of approaches as in node-link
layout

Icicle and Sunburst Trees

Mgz - -
il -
[ [T

Higher-level nodes get a larger layer area, whether
that is horizontal or angular extent

Child levels are layered, constrained to parent’ s extent
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Layered Tree Drawing
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Node-Link Graph Layout
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Spanning Tree Layout

Many graphs are tree-like or have useful
spanning trees

Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS

Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates

Heuristics may further improve layout
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Spanning tree layout may result in arbitrary parent node

112
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Sugiyama-style graph layout

113

114

Evolution of the UNIX

operating system

Hierarchical layering
based on descent

‘4.1BSD :
[23ESD’. : 42BSD : <81 Baition

S0 TN TN

- Uil . < 29BSD + . Uk - © 43BSD - SBEdiem |

Reverse some edges to remove cycles

Assign nodes to hierarchy layers > Longest path layering
Create dummy nodes to “fill in” missing layers

Arrange nodes within layer, minimize edge crossings
Route edges - layout splines if needed
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Produces hierarchical layout

Sugiyama-style layout emphasizes hierarchy

However, cycles in the graph may mislead.
Long edges can impede perception of proximity.

Hierarchical Edge Bundles
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120

Bundle Edges along Hierarchy

121

Use radial tree layout for inner circle
Mirror to outside
Replace inner tree with hierarchical edge bundles

Py =LCA(Ry,Fs)
( P4

53



Increasing Edge Tension

122

Configuring Edge Tension

123
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Flare Class Hierarchy
& Dependency Graph
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Force-Directed Layout
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Interactive Example: Configurable Force Layout
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commurity >> Enable search>>

Zephoria

User ID

21721

Friends [] 266

age

22

Gender [] Female
Status [] Single

Location
Hometown
Occupation

Interests

Music

Books

TV Shows
Movies

Member Since
Last Login
Last Updated
About

‘Want to Meet

San Francisco, CA
Lancaster, PA

researcher. social networks,
identity, context

apophenia, obsenving people,
culture, questioning power,
reading, buddhism, inseity,
computer-mediated
communication, social
networks, technology,
anthropology, stomping
psytrancefgoaltrance (Infected
Mushroorn, Son Kite.
Iboga/Digital Structures], Ani
Difranco, downternpo,
Thievery Corporation, Beth
Orton, Morcheeba, Ween,
White Stripes

Authors: Enving Goffman,
Stanley Milgram, Jeanette
Winterson, Eric Schiosser,
Leslie Feinberg, Dorothy
Allison, ltalo Calvino,
Hermann Hesse

27

Koyaanisgatsi, Amelie,
Waking Life, Tank Girl, The
Matrix, Clockwork Orange,
American Beauty, Fight Club,
Boys Dont Cry

2

2003-10-21
2003-10-21
[Some know me as danah..]

I a geek, an activist and an
academic, fascinated by
people and

society. | see life as a very
large playground and enjoy
exploring its

intricacies. | revel in life's
chaos, while simultaneously
providing my own

insane element.

My musings:

http:fhwwow Zephoria.orgthoug
htsf

Someone who makes life's
complexities seem simply
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Use the Force!

http://mbostock.github.io/d3/talk/20110921/
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d3.force
7,922 nodes
11,881 edges

s

[Kai Chang]
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http://mbostock.github.io/d3/talk/20110921/

Force-Directed Layout

Nodes = charged particles F = q* q;/ dij?
with air resistance F=-b*vy
Edges = springs F =k * (L - dij)

D3’s force layout uses velocity Verlet integration
Assume uniform mass m and timestep At:
F=ma—-F=a—->F=Av/At—> F=Av
Forces simplify to velocity offsets!

Repeatedly calculate forces, update node positions
Naive approach O(N2)
Speed up to O(N log N) using quadtree or k-d tree

Numerical integration of forces at each time step
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°°. For fast approximate
e ®oe calculation, we build
5 a spatial index (here,
a quadtree) and use
it to compare with
® o distant groups of
®e points instead.
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6=0.9
(default setting)
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Alternative Layouts
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Brujon @
Mme.Hucheloup 8—

=

Brevat @ ¢
Cheniidieu 9%
Cochepaille =
Eponine
Anzelma o
Childt »
Chili2 »

Pontmercy
Boulatruelle »
Woman2 "
Motherinnocent
Toussaint #———=""""

Bamatabols S

Mme.Magloire &

Countessdelo »
Geborand »
Tholomyes

Fauchelevent T8

Mile.Baptisting @
Montparnasse @e—="

Champmathieu o

Linear node layout, circular arcs show connections.
Layout quality sensitive to node ordering!
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For example, the picture above was built from the first line of a
very simple piece: Mary Had a Little Lamb. Each arch connects
two identical passages. To clarify the connection between the

visualization and the song, in this diagram the score is displayed The S ha pe of Song
beneath the arches. 7
[Wattenberg '01]

This diagram visualizes the refrain from the folk song Clementine.
As you would expect, the refrain consists of multiple repetitions of
the same passage--and that is exactly what the diagram shows.
The score isn't shown in this diagram since the notes would be too
small to read.
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Attribute-Driven Layout

Large node-link diagrams get messy!
Is there additional structure we can exploit?

Idea: Use data attributes to perform layout
e.g., scatter plot based on node values

Dynamic queries and/or brushing can be
used to explore connectivity

155

Attribute-Driven Layout

The “Skitter” Layout
Internet Connectivity
Radial Scatterplot

Angle = Longitude
Geography

Radius = Degree
# of connections
(a statistic of the nodes)
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£ Network Yisualization by Semantic Substrates {(N¥SS) . .
— Semantic Substrates [Shneiderman 06]
Supreme 1982 1987 1992 1998 REGIONS
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Summar
—— OB
Tree Layout

Indented / Node-Link / Enclosure / Layers
How to address issues of scale?

Filtering and Focus + Context techniques

Graph Layout

Tree layout over spanning tree

Hierarchical “Sugiyama” Layout
Optimization (Force-Directed Layout)
Attribute-Driven Layout
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