THE
HUMANE |
INTERFACE

New Directions

for Designing

Interactive Systems

JEF RASKIN

A
vy

ADDISON-WESLEY

Boston * San Francisco » New York « Toronto » Montreal
London * Munich » Paris  Madrid

Capetown « Sydney * Tokyo Singapore * Mexico City




70 MEANINGS, MODES, MONOTONY, AND MYTHS

system changes automatically, even if the change is as small as, say, 3
reordered set of items on a menu, your expectations are upset and your
habituation is frustrated. (Microsoft features adaptive menus in its Windows
2000 operating system.”’) On the other hand, there is no theory that tells
that the same fixed interface cannot work well over the full span of a per-
son’s experience with it, from novice to old timer. It seems best not to haye
to shift paradigms during your use of a product, and no elaborate analysis
needed to reveal the advantage in having to learn only one interface to 2
task. ;

It is easy to fall into the trap of designing different interfaces for dif=
ferent classes of users, because by doing so, you can make sweeping assump-
tions that simplify the design process. Few such assumptions are likely to b
true of every user in any reasonably large class of users that you specify. The
antidote is to view an interface not from the perspective of a class of user
but rather through the eyes of an individual. Every person who uses softwa
over a long period goes through a relatively brief period of learning for each
feature or command and a far longer period of routine (and, we hope, auto-
matic) use. We do need to design systems that are easy to learn and under-
stand, but it is more important that we make sure that these systems can b
efficiently used in the long run. The exceptions are applications that will b
used only briefly, so that every user is a novice, and habituation is not ai
issue. One example of such an interface is that for a computer-driven kiosl
at an exhibition. A

The learning phase of working with a feature involves your conscious
attention. Therefore, simplicity, clarity of function, and visibility are of great
importance. The expert phase is predominantly characterized by uncon
scious use of the feature; such use is enhanced by such qualities as aptness ¢
the task, modelessness, and monotony. These sets of requirements are not 1
conflict; therefore, a well-designed and humane interface does not have to be spli
into beginner and expert subsystems.

This is not to say that an interface must not be split on these lines
However, if you find yourself designing an interface and are tempted to pro
vide “expert” shortcuts, consider whether you should instead redesign th
existing method so that it satisfies the needs of all users with one mecha ism

9. Windows 2000 was a new product as this section was being written, and I was able to inter
view only a few users. A typical remark was, “Adaptive menus seemed like a cool idea, but th
first time a menu changed on me, I found it upsetting. I don’t like the idea any more.”

FOUR

Quantification

The harmony of the world is made manifest in Form and Num-
ber, and the heart and soul and all the poetry of Natural Philos-
ophy are embodied in the concept of mathematical beauty.

—D’Arcy Wentworth Thompson, On Growth and Form (1917)

. A number of methods for analyzing interface details
quantitatively are available. However, explicit directions on how to use them
are rare. This chapter gives an easy-to-use treatment and fully worked-out
examples of Card, Moran, and Newell’s keystroke-level GOMS model
Raskin’s measures of efficiency, Hick’s Law, and Fitts’ law. ’

4-1 Quantitative Analyses of Interfaces

He ﬁr"zgered and fingered the computer—it simply amazed Melrose that the
machine supposed to take the pain out of all sorts of niggling jobs took more

time to perform a simple one than it would have taken Bub to do by hand ten
times over.

—DMartha Grimes, The Stargazey (a detective novel)

L. Magy ql.Jalitative methods and heuristics are useful for analyzing and
fiderstanding interface design. These methods form the majority of the

71




72 QUANTIFICATION
content of most books on the subject, including those cited in the referenc A-\;
for Shneiderman, Norman, and Mayhew. For example, what an experi~
enced interface designer can learn from passively observing a test of a new -
interface with a few subjects can be as valuable as what she can learn &om‘
any quantitative analysis. My concentration on quantitative methods is no; '
meant to denigrate the importance of qualitative techniques but rather to
help even the balance by emphasizing the numerical and empirically testable
methods that are not yet widely used. Quantitative methods can ofte ."
reduce argument to calculation; a further, and most important, benefit is that‘
understanding why the quantitative methods work guides us to understanding impor-
tant aspects of how humans interact with machines. 1

One of the best quantitative analyses of interface design is the classi
model of goals, objects, methods, and selection rules (GOMS), which
gained attention in the 1980s (Card, Moran, and Newell 1983). GOMS
modeling allows you to predict how long an experienced worker will take to.
perform a particular operation when using a given interface design. After
discussing the GOMS model, I present quantitative methods for determin~
ing interface efficiency, cursor movement speed, and the time cost of deci~

sion making.

4-2 GOMS Keystroke-Level Model

The aim of exact science is to reduce the problems of nature to the determina=
tion of quantities by operations with numbers. :

—James Clerk Maxwell, On Faraday’s Lines of Force (185 6)

I will introduce only the simplest—yet nonetheless valuable—aspe
of the GOMS method: the keystroke-level model. We designers who know:
GOMS rarely use a detailed and formal analysis of an interface design,
but that is due, in part, to our having absorbed the fundamentals of GOMS
and of other quantitative methods such that our designs inherently in=
corporate GOMS teachings. We do bring formal analysis into play when
choosing between two approaches to interface design in which small dif=
ferences in speed can have significant economic or psychological effects.
We can sometimes benefit from the impressive accuracy of the more complete
GOMS models, such as critical-path method GOMS (CPM-GOMS) or
version called natural GOMS language (NGOMSL), which takes into account
nonexpert behavior, such as learning times. We can, for example, predict how
long it will take a user to execute a particular set of interface actions to within

GOMS KEYSTROKE-LEVEL MODEL 73

an absolute error of less than 5 percent. In these advanced models, almost all

redictions fall within 1 standard deviation of the measured times (Gray,
John, and Atwood 1993, p. 278). In a field in which religious wars are waged
over interface designs and in which gurus often have widely varying opin-
jons, it 1s advantageous to have in your armamentarium quantitative, experi-
mentally validated, and theoretically sound techniques. For a good overview
and bibliography of the various GOMS models, including her own CPM-
GOMS model, see John 1995.

4-2-1 Interface Timings
Numerical precision is the very soul of science.

—D’Arcy Wentworth Thompson, On Growth and Form (1917)

When they developed the GOMS model, its inventors observed that
the time it takes the user-computer system to perform a task is the sum of the
times it takes for the system to perform the serial elementary gestures that
the task comprises. Although different users might have widely varying times
the researchers found that for many comparative analyses of tasks involving use;
of a keyboard and a graphical input device, you could use a set of typical times
rather‘ than measuring the times of individuals. By means of careful laboratory
experiments, they developed a set of timings for different gestures. In giving
the.tlmmgs, [ follow the original nomenclature, in which each of the times is
designated by a one-letter mnemonic (Card, Moran, and Newell 1983):

K=0.2sec  Keying: The time it takes to tap a key on the key-
board

P=1.1sec Pointing: The time it takes a user to point to a posi-
tion on a display

H=0.4sec Homing: The time it takes a user’s hand to move
from the keyboard to the GID or from the GID to
the keyboard

M=135sec Mentally preparing: The time it takes a user to pre-

pare mentally for the next step
R Responding: The time a user must wait for a com-
puter to respond to input

8 I'n practi.ce, these numbers vary widely; K can be 0.08 sec for a 135-
Pm highly skilled typist, 0.2 sec for a more typical 55-wpm skilled typist,




74 QUANTIFICATION

0.28 sec for a 40-wpm average unskilled typist, or 1.2 sec for a begi il
typist. Typing speed is not independent of what is being typed: It takes m
people about 0.5 sec to type a random letter, given a set of randomly chos 4
letters to type. Typing messy codes—for example, e-mail addresse
most people about 0.75 sec per character. The value K includes time it ta y
the user to make corrections that he has caught immediately. Shift is counte
as a separate keystroke. 3

The wide variability of each measure explains why we cannot u:
this simplified model to obtain absolute timings with any degree of
tainty; by using the typical values, however, we usually obtain the corre
ranking of the performance times of two interface designs. If you are evaly
ating complex interfaces that include overlapping time dependencies or
you must generate accurate absolute times, you should use the more con
plete models, which are not discussed in this book, such as CPM-GO A

Double Dysclicksia ,

The interface technique called double clicking, that is, tapping the
GID button twice within a small time window and without any

significant cursor movement between the taps, as an interface tech-
nique suffers from problems. You cannot always predict what objec
on the display will or will not respond to a double click, and it is c
always clear what will happen if there is a response. There is no ind
cation on displayable items that double clicking is supposed to pro-
duce a response: The functionality is invisible. The way that double
clicking is used in many current interfaces, the user must remembe
not only which items are double clickable but also how different
classes of interface features respond to this action.

The first two burdens on the user could be at least partially alleviatec

by new screen conventions. The act of double clicking is, however,
itself problematical. Double clicking requires operating a mouse bul
ton twice at the same location or at two locations in very close and,
in most cases, within a short time, typically 500 msec. If the user
clicks too slowly, the machine responds to two single clicks rather
than to one double click. If the user jiggles the mouse excessively
between clicks, the same error occurs. If the user taps the GID but®
twice in too short a time period, as when trying to select text withi
a word while working within certain word processors, the machine
considers the two taps as a double click and selects the whole word-

able; d

GOMS KEYSTROKE-LEVEL MODE 75

A problem arises when the user is trying to select a graphical item
that can be repositioned with the GID. Because the GID is likely to
move when the user is pressing the GID buttons quickly, graphical
applications, instead of reading a double click, may read a drag-and-
drop and change the item’s position. Similarly, to change the text in a
text box, the user may find it necessary to reposition the accidentally
moved box and to make the text edit originally intended.

Some of us are unaffected by dysclicksia: These lucky people never
miss with the mouse; they single and double click with insouciance
and panache, do not suffer from side effects of clicking, always
remember what will and what will not respond to double clicking
and can shoot a flying bird with a .357-caliber revolver while driv-’
ing along a twisty mountain road. But we can’t assume that all users
are so lucky. We must design for the dysclicksic user and remain aware
of the problems inherent in using double clicks in an interface. !

The duration of the machine response time, R, can have an unex-
sected effect on user actions. If a user operates a control and nothing appears
on the display for more than approximately 250 msec, she is likely to become
uneasy, to try again, or to begin to wonder whether the system is failing.

We cannot build products that can complete any operation within
human reaction time, but our interfaces can always, within that time, give
feefiback that the input has been received and recognized. Ot:herwise, user
actions—often flailing at the keyboard, trying to get a response—dur’ing a
delay can start the system off on unintended activities, causing further delay or
damagmg the user’s content. For example, if you try to download a file while
accessing America Online from a browser, such as Netscape’s, there is often a
long delay. No feedback lets you know that progress is being made; a small,

Z:tl.c.message far from the locus of attention says only that the computer is
, aiting reply. After a few seconds, inexperienced users start clicking at but-
ns on the display, which stops the download—again without feedback.

.It Is important that interfaces provide feedback if delays are unavoid-
isplay a progress bar (Figure 4.1) that accurately reflects the time

T€mainj i i
b ning. If you cannot predict how much time an operation will take, say
- Yo not lie to or misinform users.

1
Fhe . . :
erm dysclicksia, a disease for which the only permanent cure is good design, was coined

4m Martin (personal communication 1997).




76 QUANTIFICATION

Figure 4.1. A progress bar. It is important that it represent time lin-
early. A textual statement of time remaining, if accurate, is also a
humane feature when delays are unavoidable.

4-2-2 GOMS Calculations

We begin the calculation of the time it takes to perform a methoc
such as “move your hand from the graphical input device to the keyboar
and type a letter,” by listing the operations from the GOMS list of gestur
(see Section 4-2-1) used in this method, in this case HK. Listing the ges
(K, P, and H) is the easy part of creating an instance of GOMS models. Th
more difficult part of developing an instance of a keystroke-level GOM
model is figuring out at what points the user will stop to perform an unco;
scious mental operation: the mental preparation (M) times. The basic rules-
following the methods of Card, Moran, and Newell 1983, p. 26
deciding where mental operations occur in a method are presented in Tabl
4.1.1n Section 4-2-3, we look at how these rules are applied in practice.

In these rules, a string is a sequence of characters. A delimiter i
character that marks the beginning or the end of a meaningful string of
such as a natural-language word or a telephone number. For example, spac
are the delimiters for most words; a period is the most common delimiter

The operators are K, P, and H. When a command needs information,
as when you use the command that sets the time for an alarm to go off ai
have to supply the time, the information you supply is an argument for th
command. ‘

4-2-3 GOMS Calculation Examples

An interface design usually begins with a task or a set of tasks th
need to be accomplished. A statement of the task and the means available f
implementing a solution are often formulated as a requirement or spe i
tion. In this example, the user is personified as Hal, a laboratory assistant.

GOMS KEYSTROKE-LEVEL MODE

TABLE 4.1. HEURISTICS FOR PLACING
MENTAL OPERATORS

Rule 0 Initial insertion of candidate Ms

Insert Ms in front of all Ks (keystrokes). Place Ms in front of all Ps (acts of
pointing with the GID) that select commands, but do not place Ms in front
of any Ps that point to arguments of those commands.

Rule 1 Deletion of anticipated Ms

If an operator following an M is fully anticipated in an operator just previ-
ous to that M, then delete that M. For example, if you move the GID with
the intent of tapping the GID button when you reach the target of your
GID move, then you delete, by this rule, the M you inserted as a conse-
quence of rule 0. In this case, PM K becomes PK.

Rule 2 Deletion of Ms within cognitive units

If a string of M Ks belongs to a cognitive unit, then delete all the Ms but
the first. A cognitive unit is a contiguous sequence of typed characters that
form a command name or that is required as an argument to a command.
For example, Y, move, Helen of Troy, or 4564.23 can be examples of cogni-
tive units.

Rule 3 Deletion of Ms before consecutive terminators
If a Kis a redundant delimiter at the end of a cognitive unit, such as the
delimiter of a command immediately following the delimiter of its argu-
ment, then delete the M in front of it.

Rule 4 Deletion of Ms that are terminators of commands
If a Kis a delimiter that follows a constant string—for example, a com-

mand name or any typed entity that is the same every time that you use
it—then delete the M in front of it. (Adding the delimiter will have

become habitual, and thus the delimiter will have become part of the string
and not require a separate M.) But if the Kis a delimiter for an argument

string or any string that can vary, then keep the M in front of it.

Rule 5 Deletion of overlapped Ms
Do not count any portion of an M that overlaps an R—a delay, with the
user waiting for a response from the computer.

Requirement

Hal works at a computer, typing reports; he is occasionally inter-
rupted by one or another of the researchers in the room, and is
asked to convert a temperature reading from degrees Fahrenheit (F)
or Celsius (C) to degrees C or E respectively. For example, Hal
might be asked, “Please convert 302.25 degrees from Fahrenheit to




78 QUANTIFICATION

Celsius.” Hal must use the keyboard or GID to enter the tempera-
ture provided; voice or other input means are not available. Conver-
sions from C to F and from F to C are approximately equally likely
to be required. About 25 percent of the temperatures called out
are negative, although the digits are unpredictable and equally dis-
tributed, and only 10 percent of the temperatures have integer val-
ues, such as 37 degrees. The numerical result must appear on the
display; no other output means are available. Hal reads to the
researcher the converted value from the screen. The input and the
output must allow for at least ten digits on each side of the decimal
point.

In designing an interface for a system that allows Hal to do his
job, your goal is to minimize the time it takes Hal to do the conver-
sion. Speed and accuracy must be maximized; screen real estate is not
limited. The window, or area of the display in which the tempera-
ture conversion takes place, is already active and waiting for Hals
input via GID or keyboard. The way Hal interacts with the interface
to return to his typing on the computer is not your concern; your
job is finished as soon as the result is displayed. i

In estimating the time it takes Hal to use the interface, assume an
average of four typed characters in an entered temperature, includ-
ing any decimal point and sign. Also assume—unrealistically, but for
simplicity’s sake—that Hal’s typing is perfect; error detection and
notification are not needed.

Now, I would like you to stop reading so that you can design ar
interface for this simple example. It will not take long to write down you
proposed solution, along with sketches of the display that Hal will see; do
not just think about this problem but rather write about it as well. (You v ill
be tempted to read on without honoring my request. Please reconsider.
next few sections will make much more interesting reading if you ha
already tried to solve the problem yourself.) After designing your interface,
read the two GOMS analyses that follow. Then you will be ready to analyze
your own interface.

4-2-3-1 Hal’s Interface: Solution 1, Dialog Box _
The instructions in Figure 4.2 are reasonably clear; from them we can
write down the method that Hal must use in terms of the gestures of the
GOMS model. The GOMS representation is shown growing incrementally
as each new gesture is added to the method.

GOMS KEYSTROKE-LEVEL MODE 79

=———— Temperature Converter '

Choose which conversion is desired, then
type the temperature and press Enter.

@ ConvertFtoC

O ConvertCto F
Figure 4.2. A dialog box solution with radio buttons.

» Move hand to the graphical input device:
H
* Point to the desired radio button:
HP
¢ Click on the radio button:
HPK
Half of the time, the interface will already have the correct conver-
sion chosen, and Hal will not need to click on the radio button. We consider
first the case in which it is not the one already chosen.
* Move hands back to the keyboard:
HPKH
* Type the four characters:
HPKHKKKK
* Tap Enter:
HPKHKKKKK
The keystroke for the tap of the Enter key completes the method

portion of the analysis. Using rule 0, we add Ms in front of all of the Ks and

Ps except those P that point to arguments, of which there are none in this
example:

HMPMKHMKMKMKMKMK

Ru.le. 1 tells us to change P M K to P K and to eliminate any other fully
anticipated Ms, of which there are none in this example. Rule 2 eliminates




80 QUANTIFICATION

Ms in the middle of strings, such as in the string that represents the tempera-
ture. Applying these two rules leaves

HMPKHMKKKKMK

The M before the final K is required by rule 4. Rules 3 and 5 do not apply in
this example.

The next step is to add the times represented by the letters. (Recall
that K=0.2, P= 1.1, H= 0.4, and M = 1.35):

H+M+P+K+H+M+K+K+K+K+M+K=

04+135+1.1+02+04+135+4*(0.2) +135+02=7.15
seconds

In the case in which the correct conversion is already selected, the
method is i

MKKKKMK
M+K+K+K+K+M+K=23.7sec

By the requirements document, these two cases are equally likely.
Thus, the average time it will take Hal to use this interface for one conver-
sion task will be (7.15 + 3.7) / 2 = 5.4 seconds. But, because the two meth-
ods that Hal has to use are different, it will be difficult for him to operate th:g :
interface automatically. One of the open problems in the quantitative analy-
sis of interfaces is how to estimate error rates from a given interface design.

Next, we explore a graphical interface that makes extensive use of a
familiar metaphor. :

4-2-3-2 Hal’s Intetface: Solution 2, GUI

The interface shown in Figure 4.3 uses realistic representations of
thermometers to indicate temperature. Hal can lower or raise the pointer on
each thermometer in Figure 4.3 by using the drag method with the GID-
Hal indicates which conversion he wants by moving the arrow on either the
Celsius or the Fahrenheit thermometer. He does not type any characters; he.
simply selects the temperature on the input thermometer. As he moves oné
of the pointers, the pointer on the other thermometer moves to the corre-
sponding temperature. To set the required precision, Hal expands and con=
tracts the scales; he can also change the range. When Hal changes the scale © .
the range on one thermometer, those on the other thermometer change
automatically to cover approximately the same set of temperatures. Numeri~

GOMS KEYSTROKE-LEVEL MODE 81

| 4

| EAFAND SCALES

Figure 4.3. A GUI for Hal’s interface. (See color insert. )

cal readouts are provided on the movable arrow. The temperature is indi-

:lj::efhizh nur;lerically and wiFh a bar, so Hal can use either the graphical or

R o cter- ?sed representations of the data to accommodate his learning

- thepersona preferences. The Auto—Med feature changes the ranges such

R Son}; are cgntered or_l 37 degrees Celsms and 98.6 degrees Fahrenheit, in

tuce & d;one in the lab .1s working with human body temperatures; this fea-
signed to save time.




82 QUANTIFICATION

Clicking on Expand Scales or Compress Scales increases or decreases i
by a factor of 10 the values at tick marks on the vertical thermometers. To
get quickly to a far-distant temperature, Hal expands the scale and scrolls up
or down until the desired range is in view, puts the arrow near the desired
temperature, and then compresses the scale, adjusting the arrow if necessary,-i
until the desired precision is attained. :

A GOMS keystroke-level analysis of this graphical interface is com~
plex because the method Hal uses depends on where the converter is
presently set and what range and precision Hal needs. We look first at the
fastest case, in which the range and the precision of the C or the F ther-
mometer happen to be already set as Hal wants them to be. This analysis wi |
give us the minimum time needed to use this interface.

+ Write down the gestures Hal uses as he moves his hand to the
GID and clicks and holds down the GID button on the desired

arrow:
HPK

« Continue listing gestures as Hal moves the arrow until it points to
the correct value and then releases the GID button:

HPKPK
¢ Place Ms according to rule 0:
HMPMKMK
+ Eliminate two Ms according to rule 1:
HMPKK
There are no cognitive units, no consecutive terminators, and no other rea ‘

sons to apply rules 2 through 5. We find the total time by adding the
for each gesture:

H+M+P+K+K
0.4+ 135+ 1.1 +0.2 + 0.2 = 3.25 seconds

desired temperature, change the range, compress the scale factor to get ade=
quate resolution, and then move the arrow. I will write down the methoe
Hal uses, without going through a step-by-step derivation. (I assume ha
Hal is a perfect user and does not have to juggle back and forth to find the
right places on the thermometer.) Hal has to use the arrows to scroll severd
times. Each scrolling operation may require several gestures; the compute

MEASUREMENT OF INTERFACE EFFICIENCY - 83

then animates the scrolling operation, which takes time. To estimate scrolling
times for the analysis, I built a similar interface and measured scrolling times,
which were all 3 seconds or longer. Using S to represent the scrolling times,
we can write the sequence of gestures that Hal uses as follows:

HPKSKPKSKPKSKPKK
Using the rules to place Ms, we get
H+3M+P+K+S+K)+M+P+K+K

04+3*%(1.35+02+3.0+02)+135+04+02+02=16.8
seconds

Except for the rare case in which the thermometer scales are correctly set at
the beginning of the problem, a perfect user will need more than 16 seconds
to accomplish a temperature conversion using this method. A real—imper-
fect—user would jog the scales and the arrows back and forth and thus take
even longer.

4-3 Measurement of Interface Efficiency
Every tool carries with it the spirit by which it has been created.

— Werner Karl Heisenberg

We have looked at two interfaces, one of which will take about 5
seconds to operate and the other of which will take more than 15 seconds to
operate. It is clear which of the two better satisfies the requirement. The
next question that we ask is how fast an interface that satisfies the require-
ment can be.

Given a design for an interface, you can use GOMS and its extensions
to C:{lCulate how long a user will take to accomplish any well-defined task with
that interface. But analysis models do not answer the question of just how fast
you should expect an interface to be. To answer this question, we can use a
measgre from information theory. In the following discussion, information is
used in the technical sense of a quantification of the amount of data conveyed
bya communication, such as when two people have a telephone conversation
or Whgn a human sends a message, such as a click of the GID button when the
(Ciursf)r 1s at a certain location, to a machine. Before dealing with the technical
acezzlii (1>.f measuring the amount of information a user must provide to

plish a task, we establish the need for such a measurement.
To make a reasonable estimate of the time that the fastest possible

int
erface for a task would take, we can proceed by first determining a lower




84 QUANTIFICATION

bound on the amount of information a user has to provide to complete
task; this minimal amount is independent of the design of the interface.
the methods of a proposed interface require an input of information that
exceeds the calculated lower bound, the user is doing unnecessary work, an 4
the proposed interface can be improved. On the other hand, if the proposed
interface requires the user to supply exactly the amount of information that
the task requires, you cannot make a more information-efficient interfz
for this task. In this latter case, there may yet be ways of improving—and
there are certainly many ways of ruining—the interface, but at least this on
efficiency goal will have been met. 2
Information-theoretic efficiency is defined similarly to the way'
efficiency is defined in thermodynamics; in thermodynamics we calculate
efficiency by dividing the power coming out of a process by the power
going into that process. If, during a certain time interval, an electrical genef,
ator is producing 820 watts while it is driven by an engine that has an output
of 1,000 watts, it has an efficiency of 820 / 1,000, or 0.82. Efficiency is 2
often expressed as a percentage; in this case, the generator has an efficiency
of 82 percent. A perfect generator—which by the second law of thermody-
namics cannot exist—would have an efficiency of 100 percent. 4
The information efficiency E of an interface is defined as the
minimum amount of information necessary to do a task, divided by the
amount of information that has to be supplied by the user. As is true of
physical efficiency, E is at least 0 and is at most 1. Where no work is requi
for a task and no work is done, the efficiency is defined as 1. (This formality
is necessary to avoid the case of 0 divided by 0, as in responding to a trans-
parent error message. See Section 5-5.)
E can be 0 when the user is required to provide information that &

totally unnecessary (Figure 4.4). Surprisingly, a number of interface detail
achieve the dubious honor of having E = 0. A dialog box that allows the usel
only one possible action, such as clicking the box’s OK button, is such an
example. (JavaScript has a command, Alert, solely for creating such unnec es-

Figure 4.4. A dialog box with an information theoretic efficiency of 0.

MEASUREMENT OF INTERFACE EFFICIENCY 85

sary boxes: The designers were wise enough to remove gofo from the
JavaScript language to force structured code, but they failed to provide simi-
Jar guidance on the interface side.)

E takes into account only the information required by the task and that
supplied by the user. Tiwo or more methods may have the same E, yet have dif-
ferent total times. It is even possible that a first method has a higher E yet is
slower than a second method—for example, M K MK versus MK K K. In this
example, only two characters have to be entered when the first method is
used. In the second method, three characters are required, yet it takes less time
to perform the task. It is difficult to construct many real-life situations that ex-
hibit this inversion of speed and information efficiency.? For the most part, the
more efficient interface is also the more productive, more humane interface.

Information is measured in bits; a single bit, which represents a
choice between two alternatives—such as 0 and 1, on and off, or yes and
no—is the unit of information.? For example, a choice made among four
objects would require 2 bits of information: If the objects are A, B, C, and
D, the first bit could choose either A and B, or C and D; once that choice
was made—say C and D—the second bit would choose either C or D. Two
binary choices, or 2 bits, suffice to separate one item from a set of four. To
choose among eight alternatives, you need 3 bits; to choose among sixteen
ifems, you need 4 bits; and so on. In general, given n equally likely alterna-
tives, the amount of information communicated by all of them taken
together is the power of 2 equal to n:

log, n
And the amount of information in any one of them is
(1/n) log, n (1)

If the probabilities among the alternatives are not necessarily equal and the

th ‘alternatlve has probability p(i), the information associated with that alter-
native is

p(i) log, (1/ p(i)) 2

i The amount of information is the sum (over all alternatives) of
—— . : .
Pression (2), which reduces to expression (1) in the equiprobable case. It

-

ato: l(;opeosmble to design more sophisticated measures of efficiency; for example, the M oper-
s not enter into our calculation. However, the simple m ,
for the ekowviny- e | p easure defined here suffices
3. Bitis ma ici
themat g i igti
o 153, p.a();islan John W. Tukey’s contraction of the words BInary digtiT (Shannon and




86 QUANTIFICATION

follows that the information content of an interface that allows only the tap
of a single button is O bits; not tapping the button is not permitted: '

Tlog, (1)=0

It would seem, however, that the required tap of a single button can,
for example, cause the ignition of dynamite used to demolish a buildingg
Would this tap of the button then convey information? It would not,
because not tapping the button was not an alternative; the interface “allows
only the tap of a single button.” If, however, the button was not tapped dur-
ing, say, a five-minute time window in which the demolition was permitted,
the building would not be demolished, and the tap or nontap would convey
up to 1 bit of information because there were, in this case, two possible mes
sages. From expression (2), we know that the calculation involves the proba-
bility, p, that the building will be exploded. The probability that it will not
be exploded is therefore 1 — p. From expression (2), we can calculate
information content of this interface:

plog, (1/p)+ (1 -p)log, (1/(1-p))
When p = %, expression 4 evaluates to

AX1+EX1=5+0r5=1

when p = 0 or p = 1, as in expression (3).

This example illustrates an important point: We can measure the
information embodied in a message only in the context of the set of possible
messages that might have been received. To calculate the amount of mfor
mation that has been conveyed by the reception of a message, we mu st
know, in particular, the probability of that message having been sent. The
amount of information in any message is independent of other messages past

any other events; similarly, the outcome of the flip of a fair coin is una -
fected by previous tosses or by what time of day it is tossed.

As explained in Shannon and Weaver (1963), it is also important
keep in mind that

information should not be confused with meaning . . . information
is a measure of one’s freedom of choice when one selects a ‘
message. . . . Note that it is misleading (although often convenient)
to say that one or the other message [when just two are possible]
conveys [1 bit of] information. The concept of information applies

MEASUREMENT OF INTERFACE EFFICIENCY 87

not to the individual messages (as the concept of meaning would),
but rather to the situation as a whole, the unit information indicating
that in this situation one has an amount of freedom of choice in
selecting a message, which it is convenient to regard as a standard or
unit amount. (p. 9)

However, a user’s actions in performing a task could be modeled with

eater accuracy as a Markoff process, whereby the probability of a later
action depends on earlier actions taken by the user, but the single-event
probabilities discussed are sufficient for the purposes of this book; messages
are assumed to be independent and equiprobable.

The amount of information conveyed by nonkeyboard devices can
also be calculated. If your display is divided into two regions—one labeled
Yes and the other labeled No—a single click in one or the other region
would supply 1 bit of information. If there are n equally likely targets, with
one click, you supply log, n bits of information. If the targets are of unequal
size, the amount of information given by each does not change, but it does
take longer to move the GID to smaller targets—by an amount that we shall
show how to calculate presently. If the targets have unequal probability, the
formula is the same as that already given for keyboard inputs with unequal
probabilities. There is a difference in that a user can operate a keyboard key
in 0.2 sec, whereas it will take 1.3 sec to operate an on-screen button, on
average, ignoring homing time.

For our purposes, we can calculate the information content of voice
input by treating speech as a sequence of input symbols, rather than as a con-
tinuous phenomenon with a certain bandwidth and duration.

This treatment of information theory and its relationship to interface
design is a simplified account. Yet even in this rudimentary form, informa-
tion theory—used in a manner analogous to our use of the simplified
GOMS keystroke-level model—can give us first-order guidance in evaluat-
ing the quality of our interface designs.

4-3-1 Efficiency of Hal’s Interfaces
Men loven of propre kynde newefangelnesse.

—Chaucer, “The Squire’s Tale”
It is useful to go through a detailed example of a calculation of the

a
Verage amount of information required for an interface technique. I will
3gain use the temperature-conversion example. According to the requirement,




88 QUANTIFICATION

the input needed by the converter consists of an average of four typed char-
acters; a decimal point occurs once in 90 percent of the inputs and not at al]

in the other 10 percent, and the negative sign occurs once in 25 percent of

the inputs and not at all in the other 75 percent. For simplicity, and because
there is no need for 1 percent precision in the answer, I will assume that all of
the other digits occur with equal frequency, and I will ignore the 10 percent
of the inputs that have no decimal point.

We need to determine the set of possible messages and the probabil-
ity of each. Five forms are possible, where d denotes a digit:

1. —.dd
2. —dd
3. .ddd
4. d.dd and
5. dd.d.

The first two each occur 12.5 percent of the time, and there are 100 of each

of them; the final three each occur 25 percent of the time, and there are

nearly 1,000 of each.* The probability for either of the first two types of

messages is (0.125 / 100) = 0.00125; the probability for any one of the final
three types of messages is (0.75 / 3000) = 0.00025. The sum of the proba-
bilities of the messages is, as it must be, 1.

The amount of information of each message, in bits, is given by

expression (2)°:

pi) log, (1/ p(¥)
This expression evaluates to approximately 0.012 for the negative values and
to 0.003 for the positive values. Calculating 200 X 0.0067 + 3000 X 0.003
gives a total of 11.4 bits for each message. -

Taking the probabilities into account can be important. If we took @
simple-minded approach and assumed that all of the 12 symbols (minus,
decimal point, and the 10 digits) were equally likely, the probability of each
would be %, and the information contained in a four-character message

would be approximately

41og, (12) ~ 14 bits

4. The “nearly” comes from the fact that the temperature of 0 degrees will not be entered as

0.00 or 00.0.

5. To get logs to the base 2 on a calculator or a computer that has only natural logs (In),
log, (x) =In (x) / In (2).

MEASUREMENT OF INTERFACE EFFICIENCY &89

It is a theorem of information theory that the information is at a
maximum when all symbols are equally likely. Therefore, making the
assumption of equiprobable messages will give you a value that is equal to or
greater than the amount of information in each message. Obviously, this
assumption also makes estimating the information content of a message eas-
ier to compute. If the resultant value of the approximation is smaller than
the amount of information your interface requires the user to supply, you do
not yet need to bother with the more refined calculation.

We have just calculated that the task requires that Hal supply an aver-
age of about 11 bits of information each time he has to convert a tempera-
ture. We can—and will, presently—divide this quantity by the amount of
information the interface requires him to supply. The result will be the effi-
ciency of the interface.

Another simplification for quick analysis is to find the amount of
information in a keystroke or a GID operation and then to count the various
gestures. When a keystroke delivers information to a computer, the amount
of information delivered depends on the total number of keys available—for
example, the number of keys on the keyboard—and the relative frequency
with which each key is used. Thus, keystrokes can be used as a rough mea-
sure of information. If a keyboard had 128 keys, each of which had the same
frequency of use, each key would represent 7 bits of information. In prac-
tice, the frequency of use varies tremendously—for example, space and e are
common, whereas j and \ are rare), and the information per keystroke is
closer to 5 bits in most applications. The requirement stated that the average
length of the input that specifies the temperature was four keystrokes.

For this analysis, it is easier to use a measure simpler than information-
theoretic efficiency but that often achieves the same practical effect. Charac-
ter efficiency is defined as the minimum number of characters required for
atask, divided by the number of characters the interface makes the user enter.

Achieving an interface that required four keystrokes, on average,
would give us a character efficiency of 100 percent. If we add a keystroke to
decide which conversion is desired and then another to delimit the answer,
our average length of input will grow to six keystrokes, and our keystroke
efficiency will drop to 67 percent. If Hal has as his input device only a 16-
key numeric keypad, the information provided by a single keystroke would
be 4 bits, and the interface would be more efficient. (The requirements,
however, do not permit us to use this option.)

Because any task in a GOMS analysis requires at least one mental oper-
ator, the most keystroke-efficient interface for the temperature-conversion
Problem will have, in theory, an average time of



90 QUANTIFICATION

M+ K+ K+ K+ K=2.15sec

Thus, it will be considerably faster than either of the two interfaces already
discussed. However, typing four characters on a standard keyboard supplies
at least 20 bits of information, whereas only 10 bits are required—j
information-theoretic efficiency of 50 percent—so we know that there o
room for improvement. As we have seen, using a standard numeric keypa d
instead of a full keyboard drops the input information per four keystrokes to
16 bits, raising the efficiency to 62 percent. A dedicated numeric keypad—
one that has only the digits, the minus sign, and a decimal point—will per-
mit a slightly higher score, of about 70 percent efficiency. We raise the score
again by using special encodings of temperature information and novel input
devices, but training difficulties and excessive costs begin to loom with these
extreme approaches, so I will stop here and accept 70 percent information-:
theoretic efficiency. Theoretical limits may or may not be reached by a prac-
tical interface, but they do give us a star by which to steer. "

4-3-2 Other Solutions for Hal’s Interface

In Section 4-3-1, we stopped trying to improve information-
theoretic efficiency when we reached 70 percent. We achieved that effi-
ciency with an unspecified, theoretical interface that somehow managed
have 100 percent keystroke efficiency. Let us see how close we can come to
this ideal with a standard keyboard and a GID. '

Consider an all-keyboard interface. In this interface, a note appears
on the display:

To convert indicate the
desired scale by typing C for Celsius or F
for Fahrenheit. Type the numeric tempera-
ture; then press the Enter key. The con-

verted temperature value will be displayed.

temperatures,

A GOMS analysis finds that the user must make six keystrokes. Follo
the rules for placements of Ms gives us

MKKKKKMK

The average time is 3.9 seconds.

MEASUREMENT OF INTERFACE EFFICIENCY 91

We can decrease this time if we can use the C or the F itself as a
delimiter. That is, consider an interface in which the following instructions

appear:

To convert temperatures, type the numeric
followed by C if it is in
degrees Celsius or F if it is in degrees
Fahrenheit. The converted temperature will

be displayed.

temperature,

In this example, the Enter key is not used. Some primitive interface-building
tools demand that the user tap Enter and will not permit us to use C or F as
a delimiter; such tools are inadequate for building humane interfaces.

The GOMS analysis of the C/F-delimiter interface yields

MKKKKMK

The average time is 3.7 seconds. If we did not have an analysis that showed
that the theoretical minimum time is 2.15 sec, this solution might strike us as
satisfactory. It is considerably more efficient than the ones that we discussed
previously, so we might stop here. Tempted by that theoretical minimum,
however, we ask whether there is an even faster approach. Consider the
interface depicted in Figure 4.5; we might describe it as bifurcated: One input
will give us two outputs.

Temperature Converter

Type in the temperature to be converted. The converted
temperature will appear on the right as you type.

s

Figure 4.5. An interface that does not require a delimiter. A more effi-
cient interface is made possible by taking advantage of character-at-a-
time interaction, and by performing both conversions at once.




92 QUANTIFICATION

Under the bifurcated interface, no delimiter is required. Further-
more, the user does not have to specify which conversion is desired. The
GOMS analysis for the average input of four characters is

MKKKK ’j

The bifurcated interface achieves the minimum 2.15 seconds and has 10(
percent character efficiency.

If, as in our example, the output sometimes changes when a characte
is typed, the flickering of the output does not distract you, because your
locus of attention is the input. The continually changing output is often
beneficial: The user will notice it only peripherally after the first few time:
that he uses the feature, at which point it will provide him feedback that the
system is responding to his input. For single-character interaction to be
effective, the system must respond quickly; in particular, the interaction
must keep up with the user’s typing speed. Only a slow network connection
should exhibit this problem.

Although not part of the requirement, you might ask how this conve
is “cleared” for the next operation. Does the clear operation add a keystro
Not necessarily. For example, we could design the interface such that, wheneve;
the operator returns to his background task or goes on to another task, the
ues in the converter are automatically grayed and the converter becomes in
tive. The values shown are not cleared at this time, so that they can be referred .
again if necessary. The next input to the converter does clear the old values.

Just because it has optimal speed of operation and is highly efficient
the bifurcated converter is not necessarily the best interface of those discussec
or of those possible. Parameters other than speed also are of importance, su€
as error rate, user learning time, and long-term user retention of the way
use the interface. We should be especially concerned about the error rate of
the bifurcated converter, due to Hal’s possibly reading the wrong output box.
especially because he may have just heard, for example, the word Celsius and
thus be required to read out the Fahrenheit line. Nonetheless, the bifurcated
converter would definitely be on the short list of interfaces to be tested fol
the temperature-converter application, and a few others that we have seen—
solutions that might otherwise have seemed worth a try had we not learne
how to do a GOMS analysis—would not make the cut. '

Whether we use it in a simple keystroke-timing analysis or in 2
detailed information-theoretic extravaganza, a quantification of the theoretr
cal minimum-time, minimum-character, or minimum-information interface
can be a useful guide for our designs. Without a quantitative guide, we are 0
guessing at how well we are doing and at how much room there is for improvement.

FITTS' LAW AND HICK'S LAW 93

4-4 Fitts’ Law and Hick’s Law
It behooves us to place the foundations of knowledge in mathematics.

—Roger Bacon, Opus Majus (13th century)

Various quantitative laws relating to interface design have sound cog-
netic underpinnings and have been validated repeatedly. These laws often give
you additional data on which you can base interface-design decisions. Fitts’
Jaw quantifies the fact that the farther a target is from your current cursor posi-
tion or the smaller the target is, the longer it will take you to move the cursor
to the target. Hick’s law quantifies the observation that the more choices of a
given kind you have, the longer it takes you to come to a decision.

4-4-1 Fitts’ Law

Consider that you are moving a cursor toward an on-screen button.
The button is the target of the move. The length of a straight line from the
position at which the cursor started to the closest point on the target is the
distance used in the statement of Fitts” law. Given the size of the target and
the distance to be moved, Fitts’ law gives you the average time it takes a
user to succeed in getting the cursor to the button.

In the one-dimensional case, in which the target’s size, measured
along the line of motion, is S and the target is at a distance D from the start-
ing position (Figure 4.6), Fitts’ law states that

Time (in msec) =a + blog, (D/ S+ 1)

(The constants a and b are determined experimentally or are derived from
human performance parameters.)® The time that you calculate begins when

e ——e

6. Mathematics, supposedly a paragon of clarity, clings yet to that old-fashioned style whereby
undeﬁned variables appears in a formula before you know what they stand for. For example,
You will see such statements as

A=
where ris the radius of a circle and A is its area.

Thi . : L aE

is hlls can be confusing, forcing you to read ahead and then go back, especially if the equation

toaf ong one with lots of as-yet-unexplained variables. Far better, from a reader’s viewpoint, is
ollow the obvious dictum to define terms before you use them:

A circle with radius r has an area A, given by:

A=12




94 QUANTIFICATION

Initial Cursor i S
Position
k = D > Target I

Figure 4.6. Distances used in Fitts’ law to determine the time to move
a cursor to a target.

the cursor is at the starting point and after the user has chosen the target. T}
logarithm to the base 2 gives a measure of the difficulty of the task in terms ¢
the number of bits of information it takes to describe the (one-dimensional
path of the cursor. ‘

The units of distance do not affect the calculated time, because D /.
is the ratio of two distances and is therefore dimensionless. It follows that
even though we might move the pointing device a distance smaller or Iz
than the distance the cursor moves on the display, the law still works when
distances are measured on the display, assuming a linear relationship betwee
GID and cursor motion. Fitts’ law applies only to the kinds of motions w
make when we are using most human-machine interfaces: motions that
small relative to human body size and that are uninterrupted, that is, move
ments that can be made in one continuous motion. For back-of-the-envelop:
approximations, [ use a = 50 and b = 150 in the Fitts’ law equation.

An extension of Fitts’ law to more complex constraints, such a
tracking a cursor between straight or curved walls, has been developed an
tested empirically (Accot and Zhai 1997). For a two-dimensional target, yot
can usually obtain a reasonable approximation of the time needed to mov
the cursor to the target, using the smaller of the horizontal and ve
dimensions of the target for the value of S (Mackenzie 1995).

Fitts’ law explains, for example, why it is much faster to move
cursor to an Apple Macintosh—style menu (Figure 4.7) that is on the edge ©
a display than to a Microsoft Windows—style menu (Figure 4.8) that float

have to stop within the confines of the menu bar but rather can continue t¢
move the GID any comfortable distance beyond that needed to put the
sor in the menu: The cursor stops at the edge of the display.

A series of tests I performed determined that users typically sto]
within about 50 mm of the edge of the display on the Macintosh, so we cai
use 50 mm as S for the Macintosh. On a 14-inch flat panel display, the aver

FITTS' LAW AND HICK'S LAW 95

File Edit View Special

Help

Figure 4.7. The Macintosh menu, at the top edge of the screen, effec-
tively increases its size compared to a menu that floats away from the
edge. (See color insert.)

4, America Online

Print My Fil

Figure 4.8. The Windows menu is below the top edge of the screen;
you have to place the cursor more carefully to pull down a submenu.
(See color insert.)

age distance the cursor must be moved to reach the menu bars is 80 mm;

thus, the calculated time to move the cursor to a menu item on the Macin-
tosh is

50 + 150 log, (80 / 50 + 1) = 256 msec.

This result is far less than the calculated time it takes to move the cursor to a
corresponding menu item on a Windows-style menu:

50 +150log, (80 / 5 + 1) = 663 msec.

These calculations apply only to the time it takes the user to move the
cursor. Clicking on the target to indicate that you believe that the cursor has
Teached its goal adds another 0.1 sec on average. (K = 0.2 in the GOMS
g:iod?l i_rlclu'des both the downstroke and the release of the button, whereas
. ® iming is stopped by the downstroke.) In a typical experimental situa-

L, you have to add the human reaction time of about 0.25 sec at the start




96 QUANTIFICATION

of the cursor movement. When we take these factors into account, we get
times that agree with what I have observed: It takes about 0.6 sec, on av
age, for a user to open an Apple menu, whereas it takes a user more than.
sec to open a Windows menu. This analysis makes it clear why menus
deliberately placed at the edge of the display when the Macintosh inte
was developed.

4-4-2 Hick’ Law

Before you move the cursor to a target or take any one action with a mulg
plicity of choices, you must first choose the target or action. Hick’s law sa
that when you have to choose to take one among # alternative actions ar
when the probabilities of taking each alternative are equal, the time
choose one of them is proportional to the logarithm to the base 2 of ¢
number of choices, plus 1. When put this way, Hick’s law looks just 1
Fitts’ law:

Time (in msec) = a + blog, (n + 1)

If the probability of the ith choice is p(i), then, instead of the logarithm
factor in the equation, you use

2 p() log, (1 / p(i) + 1)

The coefficients in Hick’s law are strongly dependent on many co
ditions, including how the choices are presented and how habituated to t
system the user has become. (If the choices are presented in a confusis
manner, both a and b can increase; habituation decreases b.) These depe
dencies will not be discussed here; all we need to consider is that maki
decisions takes time, that making complex decisions takes more time th
making simple ones, and that the relationship is logarithmic. In the absen
of better information, we can use the same coefficients a and b as for
law to make oft-the-cuft or relative estimates. ¢

Whatever positive, nonzero coefficients we use for a and b, it follo
from Hick’s law that giving a user many choices simultaneously is usu
faster than is organizing the same choices into hierarchical groups.
choices from one menu of eight items is faster than is making choices fro
two menus of four items each. Assuming that the items are equally likely
be chosen—and ignoring the time it takes to open the second menu, whic
if taken into account, would make the time taken for the two-menu i
face even longer—we compare the time to select one item of eight, @

FITTS' LAW AND HICK'S LAW 97

log, 8 with the time to select one item of four twice, 2 (a + b log, 4).
Because log, 8 = 3 and log, 4 = 2, and because both a < 2a and 3b < 4b, we

gee that
a+3b<2(a+2b)

This accords with experiments on menu structures (see, for example,
Norman and Chin 1988).

Our discussion of Fitts” and Hick’s laws is incomplete. For example, it
is no accident that they have the same form as the Shannon-Hartley theo-
rem. Nonetheless, this brief treatment is sufficient to alert you to these use-
ful guides to interface design. They can help you even if, as in the example,
you do not know the empirical coefficients a and b (For more detail, see
Card, Moran, and Newell 1983, pp. 72-74.)




