Network Analysis

Maneesh Agrawala
CS 448B: Visualization
Fall 2017

Announcements

Final project

Design new visualization method (e.g. software)

- Pose problem, Implement creative solution
- Design studies/evaluations less common but also possible (talk to us)

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
\square Project progress presentations

Schedule

- Project proposal: Mon 11/6
- Project progress presentation: 11/13 and 11/15 in class (3-4 min)
- Final poster presentation: 12/6 Location: Lathrop 282
- Final paper: 12/10 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Network Analysis

Diseases

Transportation

Characterizing networks

What does it look like?

Topics

Network Analysis

- Centrality / centralization
- Community structure
- Pattern identification
- Models

Tools for Network EDA

Centrality

How far apart are things?

Distance: shortest paths

Shortest path (geodesic path)

- The shortest sequence of links connecting two nodes
- Not always unique
- A and C are connected by 2 shortest paths
- A-E-B - C
- A-E-D - C

Distance: shortest paths

Shortest path from 2 to 3: 1

Distance: shortest paths

Shortest path from 2 to $3 ?$

Most important node?

Centrality

Degree centrality (undirected)

(1)

Normalized degree centrality

(033)

(2)

(12)
(2.25)

(2.25) $C_{D}(i)=\frac{d(i)}{N-1}$

When is degree not sufficient?

Does not capture
Ability to broker between groups
Likelihood that information originating anywhere in the network reaches you

Betweenness

Assuming nodes communicate using the most direct (shortest) route, how many pairs of nodes have to pass information through target node?

-
00

Betweenness - examples

non-normalized:
(0)
A

B

C

(0)
E
($)$

Betweenness: definition

$$
C_{B}(i)=\sum_{j, k \neq i, j<k} g_{j k}(i) / g_{j k}
$$

$g_{j k}=$ the number of geodesics connecting $j k$
$g_{j k}(i)=$ the number that node i is on.
Normalization:

$$
C_{B}^{\prime}(i)=C_{B}(i) /[(n-1)(n-2) / 2]
$$

When are C_{d}; C_{b} not sufficient?

Do not capture

Likelihood that information originating anywhere in the network reaches you

Closeness: definition

Being close to the center of the graph

Closeness Centrality:

$$
C_{c}(i)=\left[\sum_{j=1, j \neq i}^{N} d(i, j)\right]^{-1}
$$

Normalized Closeness Centrality

$$
C_{C}^{\prime}(i)=\left(C_{C}(i)\right) /(N-1)=\frac{N-1}{\sum_{j=1, j \neq i}^{N} d(i, j)}
$$

Examples - closeness

Centrality in directed networks

Prestige ~ indegree centrality
Betweenness ~ consider directed shortest paths
Closeness ~ consider nodes from which target node can be reached
Influence range ~ nodes reachable from target node

Straight-forward modifications to equations for non-directed graphs

Characterizing nodes

	Low Degree	Low Closeness	Low Betweenness
High Degree	Node embedded in cluster that is far from the rest of the network	Node's connections are redundant - communication bypasses him/her	
High Closeness	Node links to a small number of important/active other nodes.	Many paths likely to be in network; node is near many people, but so are many others	
High Betweenness Node's few ties are frucial for network	Rare. Node monopolizes the ties from a small number fof people to many others.		

Centralization - how equal

Variation in the centrality scores among the nodes

Freeman's general formula for centralization:

$$
C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}(i)\right]}{[(N-1)(N-2)]}
$$

Examples

$$
\text { (1) (1) } C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}\left(n_{i}\right)\right]}{[(N-1)(N-2)]}
$$

Examples

(1)
 (1)
(1)
(1)
(2)
(2)
$C_{D}=0.167$
(2)
(1)
(1)

$$
C_{D}=1.0
$$

Financial networks

Community Structure

How dense is it?

density $=e / e_{\max }$

Max. possible edges:

- Directed: $e_{\max }=n^{*}(n-1)$
- Undirected: $e_{\max }=n^{*}(n-1) / 2$

Is everything connected?

Connected Components - Directed

Strongly connected components

- Each node in component can be reached from every other node in component by following directed links
-BCDE
-
- GH
- F

Weakly connected components

- Each node can be reached from every other node by following links in either direction
-ABCDE
- G H F

Community finding (clustering)

Hierarchical clustering

Process:

Calculate affinity weights W for all pairs of vertices

- Start: N disconnected vertices
- Adding edges (one by one) between pairs of clusters in order of decreasing weight (use closest distance to compare clusters)
- Result: nested components

Hierarchical clustering (path counts)

Betweenness clustering

Girvan and Newman 2002 iterative algorithm:

- Compute C_{b} of all edges
\square Remove edge i where $C_{b}(i)==\max \left(C_{b}\right)$
Recalculate betweenness

Clustering coefficient

Local clustering coefficient:
$C_{i}=\frac{\text { number of closed triplets centered on } \mathrm{i}}{\text { number }}$ number of connected triplets centered on i

Global clustering coefficient:

$$
C_{i}=1 / 3=0.33
$$

$$
C_{G}=\frac{3^{*} \text { number of closed triplets }}{\text { number of connected triplets }}
$$

$$
C_{G}=3 * 1 / 5=0.6
$$

Pattern finding - motifs

Define / search for a particular structure, e.g. complete triads

Motifs can overlap in the network

motif to be found

M1

M2

M3

motif matches

4 node subgraphs

\& $4 \rightarrow \infty \rightarrow \infty$

Simulating network models

Small world network

Milgram (1967)

- Mean path length in US social networks
- ~ 6 hops separate any

Small world networks

Watts and Strogatz 1998
\square a few random links in an otherwise structured graph make the network a small world

regular lattice:
my friend's friend is always my friend
small world:
mostly structured
with a few random
connections
random graph:
all connections random

Defining small world phenomenon

Pattern:

\square high clustering

- low mean shortest path

Examples

$$
\begin{aligned}
C_{\text {network }} & \gg C_{\text {random graph }} \\
l_{\text {network }} & \approx \ln (N)
\end{aligned}
$$

\square neural network of C. elegans,

- semantic networks of languages,
- actor collaboration graph
- food webs

Power law networks

Many real world networks contain hubs: highly connected nodes
Usually the distribution of edges is extremely skewed

fat tail: a few nodes with a very large number of edges

Summary

Structural analysis

- Centrality
- Community structure
- Pattern finding
\rightarrow Widely applicable across domains

