
1

Graph Layout

Maneesh Agrawala

CS 448B: Visualization
Fall 2017

Last Time: Color

2

Integrate cone response with input spectra
Computing Cone Response

L vs. Luminance, L*

Luminance
values

L* values

L from HLS
All the same

Corners of the
RGB color cube

3

Palette Design + Color Names
Minimize overlap and ambiguity of color names

http://vis.stanford.edu/color-names

Avoid rainbow color maps!

1.  People segment colors into classes
2.  Hues are not naturally ordered
3.  Different lightness emphasizes certain scalar values
4.  Low luminance colors (blue) hide high frequencies

4

Classing quantitative data

Age-adjusted mortality rates for the United States

5

Announcements

Final project
Design new visualization method (e.g. software)

■  Pose problem, Implement creative solution
■  Design studies/evaluations less common but also possible (talk to us)

Deliverables
■  Implementation of solution
■  6-8 page paper in format of conference paper submission
■  Project progress presentations

Schedule
■  Project proposal: Mon 11/6
■  Project progress presentation: 11/13 and 11/15 in class (3-4 min)
■  Final poster presentation: 12/6 Location: Lathrop 282
■  Final paper: 12/10 11:59pm

Grading
■  Groups of up to 3 people, graded individually
■  Clearly report responsibilities of each member

6

Graph Layout

7

Graphs and Trees
Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure

■  Connected graph with N-1 edges
Nodes as parents and children

Spatial Layout
Primary concern – layout of nodes and edges

Often (but not always) goal is to depict structure
■  Connectivity, path-following
■  Network distance
■  Clustering
■  Ordering (e.g., hierarchy level)

8

Applications
Tournaments
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design

Tree Visualization
Indentation

■  Linear list, indentation encodes depth

Node-Link diagrams
■  Nodes connected by lines/curves

Enclosure diagrams
■  Represent hierarchy by enclosure

Layering
■  Layering and alignment

Tree layout is fast: O(n) or O(n log n), enabling

real-time layout for interaction

9

Indentation
Items along vertically spaced rows
Indentation shows parent/child
relationships
Often used in interfaces

Breadth/depth contend for space

Often requires scrolling

Node-Link Diagrams
Nodes distributed in space, connected by straight/curved lines
Use 2D space to break apart breadth and depth
Space used to communicate hierarchical orientation

 Typically towards authority or generality

10

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§  Breadth of tree along one dimension
§  Depth along the other dimension
Problem: exponential growth of breadth

Reingold & Tilford’s Tidier Layout
Goal: maximize density and
symmetry.

Originally for binary trees,
extended by Walker to cover
general case.

This extension was corrected
by Buchheim et al to achieve
a linear time algorithm.

11

Reingold-Tilford Layout
Design concerns
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

Reingold-Tilford Algorithm
Linear algorithm – starts with bottom-up (postorder) pass
Set Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

■  Shift right as close as possible to left
■  Computed efficiently by maintaining subtree contours

■  “Shifts” in position saved for each node as visited
■  Parent nodes are centered above their children

Top-down (preorder) pass for assignment of final positions
■  Sum of initial layout and aggregated shifts

12

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

13

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

14

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

15

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

16

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

17

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

18

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

19

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

20

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

21

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

22

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

23

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

24

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

25

Reingold-Tilford Algorithm

Reingold-Tilford Algorithm

26

Reingold-Tilford Algorithm

Radial Layout
Node-link diagram in polar coords

Radius encodes depth root at center

Angular sectors assigned to subtrees
(recursive approach)

Reingold-Tilford approach can also be
applied here

27

Circular Drawing of Trees in 3D

Circular Drawing of Trees
Cone trees – 3D layout

Balloon Trees = 2D Cone Trees
 Not just flattening – circles must
 not overlap

28

Problems with Node-Link Diagrams
Scale

 Tree breadth often grows exponentially
 Even with tidier layout, quickly run out of space

Possible solutions

 Filtering
 Focus+Context
 Scrolling or Panning
 Zooming
 Aggregation

Visualizing Large Hierarchies

… … …

Indented Layout Reingold-Tilford Layout

29

MC Escher, Circle Limit IV

Hyperbolic Layout
Layout in hyperbolic space, then
project on to Euclidean plane

Why? Like tree breadth, the
hyperbolic plane expands
exponentially

Also computable in 3D, projected
into a sphere

30

Degree-of-Interest Trees [AVI 04]

Space-constrained, multi-focal tree layout
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://bl.ocks.org/mbostock/4339083

Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis until all
blocks on a level fit within bounds
Center child blocks under parents https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://bl.ocks.org/mbostock/4339083

31

Enclosure Diagrams
Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
 Provides a single view of an entire tree
 Easier to spot large/small nodes

Problems
 Difficult to accurately read depth

TreeMaps
Recursively fill space based on
node size

Enclosure signifies hierarchy

Additional measures to control
aspect ratio of cells

Often uses rectangles, but other
shapes are possible, e.g.,
iterative Voronoi tesselation.

https://finviz.com/map.ashx

32

Signify tree structure using
Layering
Adjacency
Alignment

Involves recursive sub-division of space
Can apply the same set of approaches as in node-link layout

Layered Diagrams

Icicle and Sunburst Trees

Higher-level nodes get a larger layer area, whether that
is horizontal or angular extent
Child levels are layered, constrained to parent’s extent

33

Layered Tree Drawing

Hybrids are also possible…
“Elastic Hierarchies”
 Node-link diagram with
 treemap nodes

34

Graph Visualization

Approaches to Graph Drawing
Direct calculation using graph structure

■  Tree layout on spanning tree
■  Hierarchical layout
■  Adjacency matrix layout

Optimization-based layout
■  Constraint satisfaction
■  Force-directed layout

Attribute-driven layout
■  Layout using data attributes, not linkage

35

Spanning Tree Layout
Many graphs are tree-like or have useful
spanning trees
 Websites, Social Networks

Use tree layout on spanning tree of graph
 Trees created by BFS / DFS
 Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates

Heuristics may further improve layout

Spanning tree layout may result in arbitrary parent node

36

Sugiyama-style graph layout

Evolution of the UNIX
operating system

Hierarchical layering
based on descent

Sugiyama-style graph layout

Reverse some edges to remove cycles
Assign nodes to hierarchy layers à Longest path layering

 Create dummy nodes to “fill in” missing layers
Arrange nodes within layer, minimize edge crossings

 Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…

37

Hierarchical graph layout

Gnutella network

Limitations of Node-Link Layout

Edge-crossings and occlusion

38

39

Optimization Techniques
Treat layout as an optimization problem
Define layout using a set of constraints: equations the

layout should try to obey
Use optimization algorithms to solve

Common approach for undirected graphs
Force-Directed Layout most common

Can also introduce directional constraints
DiG-CoLa (Di-Graph Constrained Optimization Layout) [Dwyer 05]

Optimizing “Aesthetic” Constraints
Minimize edge crossings
Minimize area
Minimize line bends
Minimize line slopes
Maximize smallest angle between edges
Maximize symmetry

but, can’t do it all.

Optimizing these criteria is
often NP-Hard, requiring
approximations.

40

Force-Directed Layout
Edges = springs F = -k * (x – L)

Nodes = charged particles F = G*m1*m2 / x2

Repeatedly calculate forces, update node positions
 Naïve approach O(N2)
 Speed up to O(N log N) using quadtree or k-d tree
 Numerical integration of forces at each time step

41

Constrained Optimization Layout
Minimize stress function

stress(X) = Σi<j wij (||Xi-Xj|| - dij)2

■  X: node positions, d: optimal edge length,
■  w: normalization constants
■  Use global (majorization) or localized (gradient descent)

optimization

à Says: Try to place nodes dij apart

Add hierarchy ordering constraints
 EH(y) = Σ(i,j)∈E (yi - yj - δij)2

■  y: node y-coordinates
■  δ : edge direction (e.g., 1 for iàj, 0 for undirected)

à Says: If i points to j, it should have a lower y-value

Sugiyama layout (dot)

Preserve tree structure

DiG-CoLa method

Preserve edge lengths

42

Attribute-Driven Layout
Large node-link diagrams get messy!
Is there additional structure we can exploit?

Idea: Use data attributes to perform layout

■  e.g., scatter plot based on node values
Dynamic queries and/or brushing can be used to

explore connectivity

Attribute-Driven Layout

The “Skitter” Layout
•  Internet Connectivity
•  Radial Scatterplot

Angle = Longitude
•  Geography

Radius = Degree
•  # of connections
•  (a statistic of the nodes)

43

Semantic Substrates [Shneiderman 06]
Semantic Substrates [Shneiderman 06]

PivotGraph [Wattenberg 2006]

Roll-Up
Aggregate items with
matching data values

Selection
Filter on data values

44

PivotGraph

PivotGraph

45

PivotGraph Matrices

PivotGraph Matrix

Limitations of PivotGraph
Only 2 variables (no nesting as in Tableau)
Doesn’t support continuous variables
Multivariate edges?

46

Hierarchical Edge Bundles

Trees with Adjacency Relations

47

Bundle Edges along Hierarchy

Bundle Edges along Hierarchy

48

Configuring Edge Tension

Use radial tree layout for inner circle
Mirror to outside
Replace inner tree with hierarchical edge bundles

49

Summary
Tree Layout
 Indented / Node-Link / Enclosure / Layers
 How to address issues of scale?

■  Filtering and Focus + Context techniques

Graph Layout
 Tree layout over spanning tree
 Hierarchical “Sugiyama” Layout
 Optimization (Force-Directed Layout)
 Attribute-Driven Layout

