Using Space Effectively: 2D

Maneesh Agrawala

CS 448B: Visualization
Fall 2017

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for SF Tree Data.

1. Implement interface and produce final writeup
2. Submit the application and a final writeup on canvas

Can work alone or in pairs Due before class on Oct 30, 2017

Final project

Design new visualization method (e.g. software)

- Pose problem, Implement creative solution
- Design studies/evaluations less common but also possible (talk to us)

Deliverables

\square Implementation of solution

- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/6

Project progress presentation: 11/13 and 11/15 in class (3-4 min)

- Final poster presentation: 12/6 Location: Lathrop 282
- Final paper: 12/10 11:59pm

Grading

\square Groups of up to 3 people, graded individually
\square Clearly report responsibilities of each member

Using Space Effectively: 2D

Topics

Displaying data in graphs
Selecting aspect ratio
Fitting data and depicting residuals
Graphical calculations
Zooming and Focus + Context
Cartographic distortion

Graphs and Lines

Effective use of space

Which graph is better?

Government payrolls in 1937 [Huff 93]

Aspect ratio

Fill space with data
Don' t worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Clearly mark scale breaks

Poor scale break [Cleveland 85]

Well marked scale break [Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]
Both increase visual resolution

- Log scale - easy comparisons of all data
- Scale break - more difficult to compare across break

Linear scale vs. Log scale

Linear scale vs. Log scale

Linear scale

- Absolute change

Log scale

- Small fluctuations
- Percent change $d(10,20)=d(30,60)$

Semilog graph: Exponential growth

Exponential functions $\left(y=k a^{m x}\right)$ transform into lines $\log (y)=\log (k)+\log (a) m x$ Intercept: log(k)
Slope: $\quad \log (a) m$

$y=6^{0.5 x}$, slope in semilog space: $\log (6)^{*} 0.5=0.3891$

Semilog graph: Exponential decay

Exponential functions $\left(y=k a^{m x}\right)$ transform into lines $\log (y)=\log (k)+\log (a) m x$
Intercept: $\log (k)$
Slope: $\quad \log (a) m$

$y=0.5^{2 x}$, slope in semilog space: $\log (0.5)^{*} 2=-0.602$

Log-Log graph

Power functions ($\mathrm{y}=\mathrm{kx} x^{\mathrm{a}}$) transform into lines
Example - Steven's power laws:

$$
S=k I^{p} \rightarrow \log S=\log k+p \log I
$$

Selecting Aspect Ratio

Aspect ratio

Fill space with data
Don' t worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Banking to 45° [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when avg. absolute angle between them is 45°

Optimize the aspect ratio to bank to 45°

Aspect-ratio banking techniques

Median-Absolute-Slope Average-Absolute-Slope

$$
\alpha=\text { median }\left|s_{i}\right| R_{x} / R_{y} \quad \alpha=\text { mean }\left|s_{i}\right| R_{x} / R_{y}
$$

Has Closed Form Solution

Average-Absolute-Orientation Max-Orientation-Resolution
Unweighted
Global (over all i, j s.t. i=j])

$$
\sum_{i} \frac{\left|\theta_{i}(\alpha)\right|}{n}=45^{\circ}
$$

$$
\sum_{i} \sum_{j}\left|\theta_{i}(\alpha)-\theta_{j}(\alpha)\right|^{2}
$$

Weighted

$$
\frac{\sum_{i}\left|\theta_{i}(\alpha)\right| l_{i}(\alpha)}{\sum l_{i}(\alpha)}=45^{\circ}
$$

Local (over adjacent segments)

$$
\sum_{i}\left|\theta_{i}(\alpha)-\theta_{i+1}(\alpha)\right|^{2}
$$

Requires Iterative
Optimization

An alternate approach:
Minimize arc length (hold area constant)

Straight line -> 45 deg

Ellipse -> Circle

Perceptual model based aspect ratio

Ask people to estimate slope ratios for different conditions
Use data to fit a model derived from perceptual theory

[Talbot 12]
CO_{2} Measurements
William S. Cleveland Visualizing Data

Multi-Scale Banking to 45°

Idea: Use Spectral Analysis to identify trends
Find strong frequency components
Lowpass filter to create trend lines

Fitting the Data

[The Elements of Graphing Data. Cleveland 94]

Transforming data

How well does curve fit data?

[Cleveland 85]

Transforming data

Residual graph

- Plot vertical distance from best fit curve
- Residual graph shows accuracy of fit

[Cleveland 85]

Most powerful brain?

The Dragons of Eden [Carl Sagan]

Most powerful brain

Beautiful Evidence [Tufte]

Graphical Calculations

Nomograms

Sailing: The Rule of Three

Nomograms

1. Compute in any direction; fix $n-1$ params and read nth param
2. Illustrate sensitivity to perturbation of inputs
3. Clearly show domain of validity of computation

Theory

$$
\left|\begin{array}{ccc}
x_{1}(u) & y_{1}(u) & w_{1}(u) \\
x_{2}(v) & y_{2}(v) & w_{2}(v) \\
x_{3}(s, t) & y_{3}(s, t) & w_{3}(s, t)
\end{array}\right|=0
$$

Slide rule

Model 1474-66 Electrotechnica 18 Scales

Tehnolemn Timisoara Slide Rule Archive http://pubpages.unh.edu/~jwc/tehnolemn/

Lambert's graphical construction

Johannes Lambert used graphs to study the rate of water evaporation as function of temperature [from Tufte 83]

Focus + Context

Degree-of-Interest [Furnas 81, 06]

Estimate the saliency of information to display Can affect what is shown and/or how to show it

DOI ~ f(Current Focus, A Priori Importance)
Example: Google Search
Current Focus = Query Hits (e.g., TF.IDF score)
A Priori Importance = PageRank
What: Top N results, How: List

TableLens ${ }_{[R a o ~ \& ~ C a r d ~ 94] ~}^{4}$

Datelens

[Bederson et al. 04]

Single view detail + context

- Focus area - local details
- De-magnified area - surrounding context
- Like a rubber sheet with borders tacked down

Nonlinear Magnification Infocenter [http://www.cs.indiana.edu/\~tkeahey/research/nlm/nlm.html]

Bifocal display LLenng and Appererey 94]

2D distortion

Multifocal display LLeung and Appererey 94]

Fisheye LLeung and Apperiey eq]

6 types of distortions

Gaussian, Cosine, Hemisphere, Linear, Inverse Cosine and Manhattan. Top row shows transition from focus to distortion, bottom row from distortion to context.

Perspective allows more context

Perspective Wall [Mackinlay et al. 91]

Distortions

Transmogrifilers
 [Brosz et al. 13]

Cartograms: Distort areas

Scale area by data
[From Cartography, Dent]

Election 2012 map

Election 2012 map

\% voted democrat
\square \% voted republican

Election 2012 map

Statistical map with shading

Figure 5. Statistical map with shading
[Cleveland and McGill 84]

Framed rectangle chart

Rectangular cartogram

American population [van Kreveld and Speckmann 04]

Rectangular cartogram

Native American population [van Kreveld and Speckmann 04]

Dorling cartogram

http://www.ncgia.ucsb.edu/projects/Cartogram Central/types.htm

States as nodes in a graph

Graphical fisheye views of graphs [Sarkar \& Brown 92]

Distorting distances

Scale distance by data (airline fare) [From Cartography, Dent]

London underground

http://www.thetube.com/content/history/map.asp

Comparison to geographic map

Distorted

Undistorted

Summary

- Space is the most important visual encoding
- Geometric properties of spatial transforms support geometric reasoning
- Show data with as much resolution as possible
- Use distortions to emphasize important information

