

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for SF Tree Data.

- 1. Implement interface and produce final writeup
- 2. Submit the application and a final writeup on canvas

Can work alone or in pairs Due before class on Oct 30, 2017

Final project

Design new visualization method (e.g. software)

- Pose problem, Implement creative solution
- Design studies/evaluations less common but also possible (talk to us)

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/6
- Project progress presentation: 11/13 and 11/15 in class (3-4 min)
- Final poster presentation: 12/6 Location: Lathrop 282
- Final paper: 12/10 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Using Space Effectively: 2D

Topics

Displaying data in graphs Selecting aspect ratio Fitting data and depicting residuals Graphical calculations Zooming and Focus + Context Cartographic distortion

Banking to 45° [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when avg. absolute angle between them is 45°

Optimize the aspect ratio to bank to 45°

Multi-Scale Banking to 45°

Idea: Use Spectral Analysis to identify trends

Find strong frequency components Lowpass filter to create trend lines

ost powerful brain?							
131 N	licros	oft Excel - animal.xls			_10	X X	
:2					- 8		
	A1	v fx ID	Toop Fara T	Tungett Toth			
	A	B	С	D	E		
1		Name		Brain Weight	-		
2		Lesser Short-tailed Shrew	5				
3		Little Brown Bat	10				
4	3	Mouse	23	0.3			
5	4	Big Brown Bat	23	0.4			
6	5	Musk Shrew	48	0.33			
7	6	Star Nosed Mole	60	1			
8	7	Eastern American Mole	75	1.2			
9	8	Ground Squirrel	101	4			
10	9	Tree Shrew	104	2.5			
11	10	Golden Hamster	120	1		-	
12	11	Mole Rate	122	3			
13	12	Galago	200				
14		Rat	280				
15		Chinchilla	425				
16		Desert Hedgehog	550				
17		Rock Hyrax (a)	750				
18		European Hedgehog	785				
19		Tenrec	900				
20		Arctic Ground Squirrel	920				
21		African Giant Pouched Rat	1000				
22		Guinea Pig	1040				
23		Mountain Beaver	1350				
24		Slow Loris	1400				
25		Genet	1410				
26		Phalanger	1620	11.4		× .	
H A		animal /	•		F F		

Theory

$$x_1(u)$$
 $y_1(u)$
 $w_1(u)$
 $x_2(v)$
 $y_2(v)$
 $w_2(v)$
 $x_3(s,t)$
 $y_3(s,t)$
 $w_3(s,t)$

Degree-of-Interest [Furnas 81, 06]

Estimate the saliency of information to display Can affect *what* is shown and/or *how* to show it

DOI ~ f(Current Focus, A Priori Importance)

Example: Google Search Current Focus = Query Hits (e.g., TF.IDF score) A Priori Importance = PageRank *What*: Top N results, *How*: List

and Manhattan. Top row shows transition from focus to distortion, bottom row from distortion to context.

Summary

- Space is the most important visual encoding
- Geometric properties of spatial transforms support geometric reasoning
- Show data with as much resolution as possible
- Use distortions to emphasize important information