

Will Burtin, 1951

Destado	Penicillin	Antibiotic	Maamuala	Gram
Bacteria	Penicillin	Streptomycin	Neomycin	stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

How do the drugs compare?

Lessons

Exploratory Process

- 1 Construct graphics to address questions
- 2 Inspect "answer" and assess new questions
- 3 Repeat!

Transform the data appropriately (e.g., invert, log)

"Show data variation, not design variation"

-Tufte

Formulating a Hypothesis

Null Hypothesis (H_0) :

 $\mu_m = \mu_f$ (population)

Alternate Hypothesis (H_a):

μ_m ≠ μ_f (population)

A statistical hypothesis test assesses the likelihood of the null hypothesis.

What is the probability of sampling the observed data assuming population means are equal?

This is called the *p* value

Choropleth maps of cancer deaths in Texas.

One plot shows a real data sets. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa

Use smart defaults for visual encodings

Recently: automate visualization design (ShowMe – Like APT)

Specifying Table Configurations

Operands are names of database fields Each operand interpreted as a set {...} Data is either Ordinal or Quantitative

Three operators:

concatenation (+) cross product (x) nest (/)

Nest (/) Operator

Cross-product filtered by existing records

Quarter x Month

creates twelve entries for each quarter. i.e., (Qtr1, December)

Quarter / Month

creates three entries per quarter based on tuples in database (not semantics)

Polaris/Tableau Table Algebra

The operators (+, x, /) and operands (O, Q) provide an *algebra* for tabular visualization.

Algebraic statements are then mapped to: Queries - selection, projection, group-by aggregation Visualizations - trellis plot partitions, visual encodings

In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators! Operators are inferred by data type (O, Q)

Ordinal - Ordinal				
State	Coffee	Product Espresso H		Теа
Colorado	•	•	•	•
Connecticut	•	•	•	•
Florida	•	•	•	•
Illinois	•		•	•
Iowa	•	•	•	
Louisiana	•	•	•	
Massachusetts	•	•	•	•
Missouri	•	•	•	•
Nevada	•	•		
New Hampshire	•	•	•	•
New Mexico	•	•	•	
New York	٠	•	•	•
Ohio	•	•	•	•
Oklahoma	•	٠	•	
Oregon	•	٠	•	•
Texas	•	•	•	
Utah	•	٠	•	•
Washington	•	•	•	•
Wisconsin	•	•	•	•

Summary

Exploratory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Formal methods may be used to confirm

Interaction is essential for exploring large multidimensional datasets

Announcements

Mackinlay's ranking of encodings

ORDINAL

QUANTITATIVE

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape NOMINAL

Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Topics

Signal Detection Magnitude Estimation Pre-Attentive Visual Processing Using Multiple Visual Encodings Gestalt Grouping Change Blindness

Exponents of	power	law
--------------	-------	-----

Sensation	Exponent		
Loudness	0.6		
Brightness	0.33		
Smell	0.55 (Coffee) - 0.6 (Heptane)		
Taste	0.6 (Saccharine) -1.3 (Salt)		
Temperature	1.0 (Cold) – 1.6 (Warm)		
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)		
Duration	1.1		
Pressure	1.1		
Heaviness	1.45		
Electic Shock	3.5		

[Psychophysics of Sensory Function, Stevens 61]

Relative magnitude estimation

Mackinlay's ranking of encodings

QUANTITATIVE

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

ORDINAL

Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

NOMINAL

Conjectured effectiveness of visual encodings

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

More preattentive features

Line (blob) orientation Length Width Size Curvature Number Terminators Intersection Closure Colour (hue)	Julesz & Bergen [1983]; Wolfe et al. [1992] Triesman & Gormican [1988] Julesz [1985] Triesman & Gelade [1980] Triesman & Gormican [1988] Julesz [1985]; Trick & Pylyshyn [1994] Julesz & Bergen [1983] Julesz & Bergen [1983] Enns [1986]; Triesman & Souther [1985] Nagy & Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995]; Bauer et al. [1996]
Intensity	Beck et al. [1983]; Triesman & Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama & Silverman [1986];
Directory by star	Driver & McLeod [1992]
Binocular lustre	Wolfe & Franzel [1988]
Stereoscopic depth 3-D depth cues	Nakayama & Silverman [1986] Enns [1990]
Lighting direction	Enns [1990]
Lighting uncouch	

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

