Perception

Maneesh Agrawala

CS 448B: Visualization
Fall 2017

Last Time:
 Exploratory Data Analysis

Will Burtin, 1951

Lessons

Exploratory Process

1 Construct graphics to address questions
2 Inspect "answer" and assess new questions
3 Repeat!
Transform the data appropriately (e.g., invert, log)
"Show data variation, not design variation"

Formulating a Hypothesis

Null Hypothesis $\left(\mathrm{H}_{0}\right): \quad \mu_{\mathrm{m}}=\mu_{\mathrm{f}} \quad$ (population)
Alternate Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \quad \mu_{\mathrm{m}} \neq \mu_{\mathrm{f}} \quad$ (population)
A statistical hypothesis test assesses the likelihood of the null hypothesis.

What is the probability of sampling the observed data assuming population means are equal?

This is called the p value

Tableau

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings

Recently: automate visualization design (ShowMe - Like APT)

Specifying Table Configurations

Operands are names of database fields
Each operand interpreted as a set \{...\}
Data is either Ordinal or Quantitative
Three operators:
concatenation (+)
cross product (x)
nest (/)

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns

$$
\text { Quarter = \{(Qtr1),(Qtr2),(Qtr3),(Qtr4)\} } \rightarrow
$$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes

$$
\text { Profit }=\{(\text { Profit[-410,650] })\} \rightarrow
$$

Concatenation (+) Operator

Ordered union of set interpretations
Quarter + Product Type
$=\{($ Qtr1),(Qtr2),(Qtr3),(Qtr4)\} + \{(Coffee), (Espresso) \}
= \{(Qtr1),(Qtr2),(Qtr3),(Qtr4),(Coffee),(Espresso)\}

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000]) $\}$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
= \{(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)\}

Qtr1		Qtr2		Qtr3		Qtr4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso
131	19	160	20	178	12	134	33

Product Type x Profit =

Nest (I) Operator

Cross-product filtered by existing records
Quarter x Month
creates twelve entries for each quarter. i.e., (Qtr1, December)

Quarter / Month
creates three entries per quarter based on tuples in database (not semantics)

Polaris/Tableau Table Algebra

The operators (+, x, /) and operands (O, Q) provide
an algebra for tabular visualization.
Algebraic statements are then mapped to:
Queries - selection, projection, group-by aggregation
Visualizations - trellis plot partitions, visual encodings

In Tableau, users make statements via drag-and-drop
Note that this specifies operands NOT operators!
Operators are inferred by data type (O, Q)

Ordinal - Ordinal

Grate	Product Type			Tea
Colorado	-	-	-	-
Connecticut	\bullet	\bullet	\bullet	-
Florida	-	-	-	-
Illinois	-	-	-	-
Iowa	-	-	-	-
Louisiana	-	-	-	
Massachusetts	-	\bullet	-	-
Missouri	-	-	-	\bullet
Nevada	-	-	-	
New Hampshire	\bullet	-	-	-
New Mexico	\bullet	-	-	
New York	-	\bigcirc	-	-
Ohio	-	-	-	-
Oklahoma	-	-	-	
Oregon	-	-	-	-
Texas	-	-	-	
Utah	-	-	-	\bullet
Washington	\bullet	-	-	-
Wisconsin	-	\bullet	-	\bullet

Quantitative - Quantitative

Ordinal - Quantitative

Summary

Exploratory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Formal methods may be used to confirm

Interaction is essential for exploring large multidimensional datasets

Announcements

Assignment 2: Exploratory Data Analysis

Use Tableau to formulate $\&$ answer questions
First steps

- Step 1: Pick a domain
- Step 2: Pose questions
- Step 3: Find data
- Iterate

Create visualizations
\square Interact with data

- Question will evolve
- Tableau

Make notebook

- Keep record of all steps you took to answer the questions

Perception

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Topics

Signal Detection

Magnitude Estimation

Pre-Attentive Visual Processing
Using Multiple Visual Encodings
Gestalt Grouping
Change Blindness

Detection

Detecting brightness

Which is brighter?

Detecting brightness

(130, 130, 130)

Which is brighter?

Just noticeable difference

JND (Weber's Law)

$$
\Delta S=k \frac{\Delta I}{I}
$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrete steps

Information in color and value

Value is perceived as ordered
\therefore Encode ordinal variables (O)

\therefore Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered
\therefore Encode nominal variables (N) using color

Steps in font size

Sizes standardized in $16^{\text {th }}$ century

$$
\begin{array}{lll}
2 \\
678 & 9 & 10
\end{array}
$$

Estimating Magnitude

Steven's power law

$$
S=I^{p}
$$

$p<1$: underestimate $p>1$: overestimate

[graph from Wilkinson 99, based on Stevens 61]

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) -0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	$1.0($ Cold $)-1.6($ Warm $)$
Vibration	$0.6(250 \mathrm{~Hz})-0.95(60 \mathrm{~Hz})$
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

[Psychophysics of Sensory Function, Stevens 61]

Apparent magnitude scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96]

$$
S=0.98 A^{0.87} \text { [from Flannery 71] }
$$

Proportional symbol map

Graduated sphere map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in The Geographical Review, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

Cleveland and McGill

[Cleveland and McGill 84]

Relative magnitude estimation

Most accurate
Position (common) scale
Songth
Lealigned) scale
Angle
Least accurate

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Conjectured effectiveness of visual encodings

Preattentive vs. Attentive

How many 3's

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's

$$
\begin{aligned}
& 1281768756138976546984506985604982826762 \\
& 980985845824509856458945098450980943585 \\
& 90910302990595959577256465050678904567 \\
& 8845789809821677654876364908560912949686
\end{aligned}
$$

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Visual pop-out: Shape

Feature conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Preattentive features

[Information Visualization. Figure 5. 5 Ware 04]

More preattentive features

Line (blob) orientation
Length
Width
Size
Curvature
Number
Terminators
Intersection
Cosure
Colour (hue)

Intensity
Flicker
Direction of motion
Binocular lustre
Stereoscopic depth
3-D depth cues
Lighting direction

Length
Width
Curvature
Number
Terminators
intersection
Closure
Colour (hue)

Intensity
Flicker

Stereoscopic depth
3-D depth cues
Lighting direction

Julesz \& Bergen [1983]; Wolfe et al. [1992]
Triesman \& Gormican [1988]
Julesz [1985]
Triesman \& Gelade [1980]
Triesman \& Gormican [1988]
Julesz [1985]; Trick \& Pylyshyn [1994]
Julesz \& Bergen [1983]
Julesz \& Bergen [1983]
Enns [1986]; Triesman \& Souther [1985]
Nagy \& Sanchez [1990, 1992];
D'Zmura [1991]; Kawai et al. [1995];
Bauer et al. [1996]
Beck et al. [1983];
Triesman \& Gormican [1988]
Julesz [1971]
Nakayama \& Silverman [1986];
Driver \& McLeod [1992]
Wolfe \& Franzel [1988]
Nakayama \& Silverman [1986]
Enns [1990]
Enns [1990]

Feature-integration theory

Feature maps for orientation \& color [Green]

Treisman's feature integration model [Healey04]

Multiple Attributes

One-dimensional: Lightness

White

White

Black

White

Black
\square

One-dimensional: Shape

Square

Circle

Circle

Square

Circle

Circle

Correlated dims: Shape or lightness

	Circle
	Square
	Square
	Circle
	Square

	Circle
Square	
	Square
	Square
	Circle

Orthogonal dims: Shape \& lightness

	Circle
	Square
	Square
	Circle

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference Difficulty in ignoring one dimension while attending to the other

Speeded classification

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect - Color naming influenced by word identity, but word naming not influenced by color

Correlated dims: Size and value

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Othogonal dims: Aspect ratio

FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

Shape and Size (Single Mark)

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Easier to see one shape across multiple sizes than one size of across multiple shapes?

Summary of Integral-Separable

[Figure 5.25, Color Plate 10, Ware 00]

